当前位置: X-MOL 学术J. Cosmol. Astropart. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
BSM with cosmic strings: heavy, up to EeV mass, unstable particles
Journal of Cosmology and Astroparticle Physics ( IF 6.4 ) Pub Date : 2020-07-07 , DOI: 10.1088/1475-7516/2020/07/016
Yann Gouttenoire 1 , Géraldine Servant 1, 2 , Peera Simakachorn 1, 2
Affiliation  

Unstable heavy particles well above the TeV scale are unaccessible experimentally. So far, Big-Bang Nucleosynthesis (BBN) provides the strongest limits on their mass and lifetime, the latter being shorter than 0.1 second. We show how these constraints could be potentially tremendously improved by the next generation of Gravitational-Wave (GW) interferometers, extending to lifetimes as short as $10^{-16}$ second. The key point is that these particles may have dominated the energy density of the universe and have triggered a period of matter domination at early times, until their decay before BBN. The resulting modified cosmological history compared to the usually-assumed single radiation era would imprint observable signatures in stochastic gravitational-wave backgrounds of primordial origin. In particular, we show how the detection of the GW spectrum produced by long-lasting sources such as cosmic strings would provide a unique probe of particle physics parameters. When applied to specific particle production mechanisms in the early universe, these GW spectra could be used to derive new constraints on many UV extensions of the Standard Model. We illustrate this on a few examples, such as supersymmetric models where the mass scale of scalar moduli and gravitino can be constrained up to $10^{10}$ GeV. Further bounds can be obtained on the reheating temperature of models with only-gravitationally-interacting particles as well as on the kinetic mixing of heavy dark photons at the level of $10^{-18}$.

中文翻译:

带宇宙弦的 BSM:重、高达 EeV 质量、不稳定粒子

远高于 TeV 标度的不稳定重粒子在实验上是无法获得的。到目前为止,大爆炸核合成 (BBN) 对其质量和寿命提供了最强的限制,后者短于 0.1 秒。我们展示了下一代引力波 (GW) 干涉仪如何潜在地极大地改善这些约束,将寿命延长至 10 美元 ^{-16} 美元秒。关键在于,这些粒子可能主导了宇宙的能量密度,并在早期引发了一段物质统治时期,直到它们在 BBN 之前衰变。与通常假设的单一辐射时代相比,由此产生的修改后的宇宙学历史将在原始起源的随机引力波背景中留下可观察到的特征。特别是,我们展示了对由宇宙弦等持久源产生的 GW 光谱的检测将如何提供对粒子物理参数的独特探测。当应用于早期宇宙中的特定粒子产生机制时,这些 GW 光谱可用于推导出对标准模型的许多紫外线扩展的新约束。我们通过几个例子来说明这一点,例如超对称模型,其中标量模量和引力的质量尺度可以被限制到 $10^{10}$ GeV。可以在具有仅引力相互作用的粒子的模型的再加热温度以及 $10^{-18}$ 水平的重暗光子的动力学混合上获得进一步的界限。当应用于早期宇宙中的特定粒子产生机制时,这些 GW 光谱可用于推导出对标准模型的许多紫外线扩展的新约束。我们通过几个例子来说明这一点,例如超对称模型,其中标量模量和引力的质量尺度可以被限制到 $10^{10}$ GeV。可以在具有仅引力相互作用的粒子的模型的再加热温度以及 $10^{-18}$ 水平的重暗光子的动力学混合上获得进一步的界限。当应用于早期宇宙中的特定粒子产生机制时,这些 GW 光谱可用于推导出对标准模型的许多紫外线扩展的新约束。我们通过几个例子来说明这一点,例如超对称模型,其中标量模量和引力的质量尺度可以被限制到 $10^{10}$ GeV。可以在具有仅引力相互作用的粒子的模型的再加热温度以及 $10^{-18}$ 水平的重暗光子的动力学混合上获得进一步的界限。
更新日期:2020-07-07
down
wechat
bug