当前位置: X-MOL 学术Int. J. Photoenergy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Oxygen Vacancy-Mediated Interfacial Charge Transfer of Au/ZnO Schottky Heterojunctions for Enhanced UV Photodegradation
International Journal of Photoenergy ( IF 2.1 ) Pub Date : 2020-07-07 , DOI: 10.1155/2020/2456968
Zhufeng Shao 1 , Hui Jia 1 , Yufeng Zhang 1 , Xiujuan Yang 1 , Min Zhong 1 , Chun Chang 1
Affiliation  

We intend to report an interesting phenomenon related to the different interfacial transfer processes between ellipsoidal-like ZnO (E-ZnO) and rod-like ZnO (R-ZnO) nanoheterojunctions witness by the nanosecond time-resolved transient photoluminescence (NTRT-PL) spectra. Fristly, E-ZnO and R-ZnO nanoarchitectures were fabricated via facilitating the electrochemical route; and then, they decorated it with dispersed Au nanoparticles (NPs) by the methods of ion-sputtering deposition, constituting Au/E-ZnO and Au/R-ZnO Schottky-heterojunction nanocomplex, which is characterized by SEM, XRD, Raman analysis, and UV-vis absorption spectra. Steady-state photoluminescence and NTRT-PL spectra of as-fabricated Au/E-ZnO and Au/R-ZnO nanocomposites were probed for interfacial charge transfer process under 266 nm femtosecond (fs) light irradiation. Simultaneously, a distinct diversification for the NTRT-PL spectra is observed, closely associating with oxygen vacancies (Vo), which is confirmed by X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) spectra. Furthermore, Au NPs act as an “annular bridge” and “transit depot” for interfacial charge transfer through local surface plasmon resonance (LSPR) effect and Schottky barrier, respectively, which is identified by NTRT-PL and time-resolved PL (TRPL) decay spectrum. Moreover, this mechanism is responsible for the enhanced photoelectrochemical (PEC) performances of methyl orange (MO) photodegradation under UV light irradiation.

中文翻译:

Au/ZnO 肖特基异质结的氧空位介导的界面电荷转移用于增强紫外光降解

我们打算报告一个有趣的现象,该现象与椭球状 ZnO (E-ZnO) 和棒状 ZnO (R-ZnO) 纳米异质结之间的不同界面转移过程相关,由纳秒时间分辨瞬态光致发光 (NTRT-PL) 光谱证明. 首先,通过促进电化学途径制备了 E-ZnO 和 R-ZnO 纳米结构;然后,他们通过离子溅射沉积的方法用分散的 Au 纳米粒子 (NPs) 装饰它,构成 Au/E-ZnO 和 Au/R-ZnO 肖特基异质结纳米复合物,通过 SEM、XRD、拉曼分析对其进行表征,和紫外可见吸收光谱。在 266 nm 飞秒 (fs) 光照射下,研究了制备的 Au/E-ZnO 和 Au/R-ZnO 纳米复合材料的稳态光致发光和 NTRT-PL 光谱,用于界面电荷转移过程。同时,观察到 NTRT-PL 光谱的明显多样化,与氧空位 (Vo) 密切相关,X 射线光电子能谱 (XPS) 和电子自旋共振 (ESR) 光谱证实了这一点。此外,Au NPs 分别通过局部表面等离子体共振 (LSPR) 效应和肖特基势垒作为界面电荷转移的“环形桥”和“传输库”,由 NTRT-PL 和时间分辨 PL (TRPL) 识别衰变谱。此外,这种机制是在紫外光照射下甲基橙(MO)光降解的增强光电化学(PEC)性能的原因。X 射线光电子能谱 (XPS) 和电子自旋共振 (ESR) 光谱证实了这一点。此外,Au NPs 分别通过局部表面等离子体共振 (LSPR) 效应和肖特基势垒作为界面电荷转移的“环形桥”和“传输库”,由 NTRT-PL 和时间分辨 PL (TRPL) 识别衰变谱。此外,这种机制是在紫外光照射下甲基橙(MO)光降解的增强光电化学(PEC)性能的原因。X 射线光电子能谱 (XPS) 和电子自旋共振 (ESR) 光谱证实了这一点。此外,Au NPs 分别通过局部表面等离子体共振 (LSPR) 效应和肖特基势垒作为界面电荷转移的“环形桥”和“传输库”,由 NTRT-PL 和时间分辨 PL (TRPL) 识别衰变谱。此外,这种机制是在紫外线照射下甲基橙(MO)光降解的增强光电化学(PEC)性能的原因。
更新日期:2020-07-07
down
wechat
bug