当前位置: X-MOL 学术LEUKOS › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lighting Standards: When is Doing Something, Better than Doing Nothing?
LEUKOS ( IF 2.6 ) Pub Date : 2020-07-07 , DOI: 10.1080/15502724.2020.1741963
Kevin W. Houser 1
Affiliation  

The lighting industry is amid transformations enabled by rapid advances in solid-state light generation and control and an ever-increasing understanding of how lighting contributes to human health. New technologies and scientific understandings influence design practice, standards, and codes—which in turn influences legislative requirements and legal obligations. While informed by an understanding of science and technology, standards and codes are ultimately products of consensus and compromise. The constituencies involved in writing consensus documents—including representatives from government agencies, design professionals, equipment manufacturers, and scientific researchers—almost always have different priorities. A researcher may prioritize technical accuracy even if it causes disruption to the way that lighting products are characterized and marketed. A manufacturer may prioritize continuity and believe that revisions are akin to “changing the rules,” unless the revision will facilitate customer acceptance or be leveraged as a commercial advantage. Consider a few examples of lighting standards and codes that are making societal impacts, but which have also prompted dissidence. Early versions of the WELL Building Standard endeavored to support circadian photobiology, but the requirements ignored time of day and were defined with reference to visual rather than nonvisual needs (IWBI 2015). While the intent was laudable, the recommendations were irrational. The current version is an improvement because the criteria considers the time of day, employs more sensible units, and disentangles visual and nonvisual requirements ([IWBI] International Well Building Institute 2020). Even though the numerical recommendations for circadian lighting design are still only tenuously supported by scientific understanding, the general trend in the recommendations is compatible with current knowledge. IES TM-30-15 (IES 2015) provided a method for characterizing light source color rendition that is an objective improvement over any prior system. When introduced, however, it was incomplete because it did not provide guidance for setting design criteria using TM-30 indices (David et al. 2015). This limitation was addressed with a multi-year research and consensus building effort that led to the publication Annexes E and F (IES 2019a, 2019b) of ANSI/IES TM-30-18 (ANSI/IES 2018), and a revised computational tool. Annex E providesspecification guidance based on benchmarking, empirical evidence from human factors studies, and experience. The revised computational tool provides a standardized output that facilitates reporting and product comparisons. These first two examples show how standards can adapt and mature in response to critical feedback and industry needs. In these cases, the initial efforts, despite being faulty or incomplete, were tested in practice and revised to become better. In 2016, the California Energy Commission (CEC) adopted a voluntary minimum specification for “California Quality” LED lamps that require lamps for residential use to have individual color rendering index (Ri) scores of 72 or greater (Soheila et al. 2016). Practically, this requires a general color rendering index (CRI, or Ra) of 90 or greater. This policy was adopted as part of Title 20 in 2017 (CEC 2017) despite opposition from NEMA (2016) and others. CEC reaffirmed the policy in 2018 (CEC 2018), 2019 (CEC 2019a) and 2020 (CEC 2019b, 2019c). The policy has the benefit of ensuring that color quality will not be poor, but it inhibits sources that would have other benefits, such as better color preference, higher luminous efficacy, or lower cost. Despite good intentions, CEC’s policy is a free market intervention that blocks innovation and limits consumer choice. In 2016, the American Medical Association (AMA) made recommendations about outdoor lighting (AMA 2016) that some considered to be misguided (e.g., IALD 2017; IES 2017a, 2017b; Houser 2017; Rea and Figueiro 2016). At root, the AMA policy fails to adequately characterize LEUKOS 2020, VOL. 16, NO. 4, 251–253 https://doi.org/10.1080/15502724.2020.1741963

中文翻译:

照明标准:什么时候做点什么比什么都不做更好?

固态光产生和控制的快速发展以及对照明如何促进人类健康的不断加深的了解,推动了照明行业的转型。新技术和科学理解会影响设计实践、标准和规范,进而影响立法要求和法律义务。虽然了解科学和技术,但标准和规范最终是共识和妥协的产物。参与编写共识文件的选区——包括来自政府机构、设计专业人士、设备制造商和科学研究人员的代表——几乎总是有不同的优先事项。研究人员可能会优先考虑技术准确性,即使它会破坏照明产品的特征和营销方式。制造商可能会优先考虑连续性,并认为修订类似于“改变规则”,除非修订将促进客户接受或被用作商业优势。考虑一些正在产生社会影响但也引发异议的照明标准和规范示例。WELL 建筑标准的早期版本致力于支持昼夜节律光生物学,但这些要求忽略了一天中的时间,而是参照视觉需求而非非视觉需求来定义的 (IWBI 2015)。虽然其意图值得称道,但这些建议是不合理的。当前版本是一个改进,因为标准考虑了一天中的时间,使用更合理的单位,并解开视觉和非视觉要求([IWBI] 国际井建设研究所 2020)。尽管对昼夜节律照明设计的数值建议仍仅得到科学理解的微弱支持,但建议中的总体趋势与当前知识相一致。IES TM-30-15 (IES 2015) 提供了一种表征光源色彩再现的方法,该方法是对任何先前系统的客观改进。然而,在引入时,它是不完整的,因为它没有为使用 TM-30 指数设定设计标准提供指导(David 等人,2015 年)。通过多年的研究和建立共识的努力解决了这一限制,最终出版了 ANSI/IES TM-30-18(ANSI/IES 2018)的附件 E 和 F(IES 2019a、2019b),和修改后的计算工具。附件 E 提供了基于基准、人为因素研究的经验证据和经验的规范指导。修订后的计算工具提供了标准化的输出,便于报告和产品比较。前两个示例展示了标准如何适应和成熟以响应关键反馈和行业需求。在这些情况下,尽管最初的努力有缺陷或不完整,但在实践中得到了检验并进行了改进以变得更好。2016 年,加利福尼亚能源委员会 (CEC) 采纳了“加利福尼亚质量”LED 灯的自愿最低规范,要求住宅用灯的单个显色指数 (Ri) 得分为 72 或更高(Soheila 等人,2016 年)。实际上,这需要一般的显色指数(CRI,或 Ra) 为 90 或更高。尽管受到 NEMA (2016) 和其他机构的反对,该政策还是在 2017 年 (CEC 2017) 中作为第 20 条的一部分被采纳。CEC在2018年(CEC 2018)、2019年(CEC 2019a)和2020年(CEC 2019b、2019c)重申了该政策。该政策的好处是确保颜色质量不会变差,但它会抑制具有其他好处的光源,例如更好的颜色偏好、更高的发光效率或更低的成本。尽管意图良好,但 CEC 的政策是一种阻止创新和限制消费者选择的自由市场干预措施。2016 年,美国医学协会 (AMA) 提出了一些关于户外照明的建议 (AMA 2016),有些人认为这些建议被误导(例如,IALD 2017;IES 2017a,2017b;Houser 2017;Rea 和 Figueiro 2016)。从根本上说,AMA 政策未能充分描述 LEUKOS 2020,VOL。16,没有。4、
更新日期:2020-07-07
down
wechat
bug