当前位置: X-MOL 学术Int. J. Chem. Kinet. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Theoretical study on the HACA chemistry of naphthalenyl radicals and acetylene: The formation of C12H8, C14H8, and C14H10 species
International Journal of Chemical Kinetics ( IF 1.5 ) Pub Date : 2020-07-06 , DOI: 10.1002/kin.21397
Te‐Chun Chu 1 , Mica C. Smith 1 , Jeehyun Yang 2 , Mengjie Liu 1 , William H. Green 1
Affiliation  

The hydrogen‐abstraction‐C2H2‐addition (HACA) chemistry of naphthalenyl radicals has been studied extensively, but there is a significant discrepancy in product distributions reported or predicted in literature regarding appearance of C14H8 and C14H10 species. Starting from ab initio calculations, a comprehensive theoretical model describing the HACA chemistry of both 1‐ and 2‐naphthalenyl radicals is generated. Pressure‐dependent kinetics are considered in the C12H9, C14H9, and C14H11 potential energy surfaces including formally direct well‐skipping pathways. On the C12H9 PES, reaction pathways were found connecting two entry points: 1‐naphthalenyl (1‐C10H7) + acetylene (C2H2) and 2‐C10H7 + C2H2. A significant amount of acenaphthylene is predicted to be formed from 2‐C10H7 + C2H2, and the appearance of C14H8 isomers is predicted in the model simulation, consistent with high‐temperature experimental results from Parker et al. At 1500 K, 1‐C10H7 + C2H2 mostly generates acenaphthylene through a formally direct pathway, which predicted selectivity of 66% at 30 Torr and 56% at 300 Torr. The reaction of 2‐C10H7 with C2H2 at 1500 K yields 2‐ethynylnaphthalene as the most dominant product, followed by acenaphthylene mainly generated via isomerization of 2‐C10H7 to 1‐C10H7. Both the 1‐C10H7 and 2‐C10H7 reactions with C2H2 form some C14H8 products, but negligible phenanthrene and anthracene formation is predicted at 1500 K. A rate‐of‐production analysis reveals that C14H8 formation is strongly affected by the rates of H‐abstraction from acenaphthylene, 1‐ethynylnaphthalene, and 2‐ethynylnaphthalene, so the kinetics of these reactions are accurately calculated at the high level G3(MP2,CC)//B3LYP/6‐311G** level of theory. At intermediate temperatures like 800 K, acenaphthylene + H are the leading bimolecular products of 1‐C10H7 + C2H2, and 1‐acenaphthenyl radical is the most abundant C12H9 isomer due to its stability. The predicted product distribution of 2‐C10H7 + C2H2 at 800 K, in contrast to the results of Parker et al is predicted to consist primarily of species containing three fused benzene rings—for example, phenanthrene and anthracene—as the leading products, indicating HACA chemistry is valid from two to three ring polycyclic aromatic hydrocarbons under some conditions. Further experiments are needed for validation.

中文翻译:

萘基和乙炔的HACA化学的理论研究:C12H8,C14H8和C14H10物种的形成

萘基自由基的吸氢C 2 H 2加成(HACA)化学已得到广泛研究,但有关C 14 H 8和C 14 H 10种类的文献报道或预测的产品分布存在显着差异。从头算开始,生成了描述1–和2–萘基的HACA化学性质的综合理论模型。在C 12 H 9,C 14 H 9和C 14 H 11中考虑了压力依赖性动力学势能面,包括形式上直接的跳井路径。在C 12 H 9 PES上,发现了连接两个入口点的反应路径:1-萘基(1-C 10 H 7)+乙炔(C 2 H 2)和2-C 10 H 7 + C 2 H 2。预计大量的of烯是由2–C 10 H 7 + C 2 H 2和C 14 H 8的外观形成的模型模拟中预测了异构体,这与Parker等人的高温实验结果一致。在1500 K下,1–C 10 H 7 + C 2 H 2主要通过形式直接途径生成generates烯,预计在30 Torr时选择性为66%,在300 Torr时选择性为56%。2‐C 10 H 7与C 2 H 2在1500 K下的反应生成2-乙炔基萘为最主要的产物,随后是mainly烯,主要是通过2‐C 10 H 7异构化为1‐C 10 H 7生成的。1‐C 10 H 7都和2‐C 10 H 7与C 2 H 2的反应会形成一些C 14 H 8产物,但预计在1500 K时菲和蒽的形成可忽略不计。生产率分析表明,C 14 H 8的形成受到很大影响根据from,1-乙炔基萘和2-乙炔基萘中H的吸收率,因此可以在理论水平高的G3(MP2,CC)// B3LYP / 6-311G **下精确计算这些反应的动力学。在800 K等中等温度下,烯+ H是1–C 10 H 7 + C的主要双分子产物。2 H 2和1-‐烯基由于其稳定性而成为最丰富的C 12 H 9异构体。与Parker等人的结果相反,在800 K时2–C 10 H 7 + C 2 H 2的预测产物分布主要由包含三个稠合苯环的物质组成,例如菲和蒽。主导产品,表明HACA化学方法在某些条件下对2至3个环多环芳烃有效。验证需要进一步的实验。
更新日期:2020-07-06
down
wechat
bug