当前位置: X-MOL 学术Compos. Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An anisotropic cohesive phase field model to model quasi-brittle fractures in thin fibre-reinforced composites
Composite Structures ( IF 6.3 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.compstruct.2020.112635
Udit Pillai , Savvas P. Triantafyllou , Yasser Essa , Federico Martin de la Escalera

Abstract Thin unidirectional-tape and woven-fabric composites are widely utilized in the aerospace and automotive industries due to their enhanced fatigue life and damage resistance. Providing high-fidelity simulations of intra-laminar damage in such laminates is a challenging task both from a physics and a computational standpoint, due to their complex and largely quasi-brittle fracture response. This is manifested by matrix cracking and fibre breakage, which result in a sudden loss of strength with minimum crack openings; subsequent fibre pull-outs result in a further, although gradual, strength loss. To effectively model this response, it is necessary to account for the cohesive forces evolving within the fracture process zone. Furthermore, the interaction of the failure mechanisms pertinent to both the fibres and the matrix necessitate the definition of anisotropic damage models. We propose a cohesive phase-field model to simulate intra-laminar fracture in fibre reinforced composites. To capture damage anisotropy, distinct energetic crack driving forces are defined for each pertinent composite damage mode together with a structural tensor that accounts for material orientation dependent fracture properties. The material degradation is governed by a 3-parameter quasi-quadratic degradation function, which can be calibrated to experimentally derived strain softening curves. The proposed damage model is implemented in Abaqus and is validated against experimental results.

中文翻译:

用于模拟薄纤维增强复合材料中准脆性断裂的各向异性内聚相场模型

摘要 薄单向带和机织织物复合材料由于其增强的疲劳寿命和抗损伤性而被广泛应用于航空航天和汽车工业。从物理学和计算的角度来看,提供此类层压板中层内损伤的高保真模拟是一项具有挑战性的任务,因为它们复杂且在很大程度上是准脆性断裂响应。这表现为基体开裂和纤维断裂,这会导致强度突然下降,裂纹开口最小;随后的纤维拉出导致强度进一步下降,尽管是渐进的。为了有效地模拟这种响应,有必要考虑在断裂过程区内演变的内聚力。此外,与纤维和基体相关的失效机制的相互作用需要定义各向异性损伤模型。我们提出了一种内聚相场模型来模拟纤维增强复合材料的层内断裂。为了捕捉损伤各向异性,为每个相关的复合损伤模式定义了不同的高能裂纹驱动力,以及解释材料取向相关断裂特性的结构张量。材料退化由 3 参数准二次退化函数控制,该函数可以校准为实验得出的应变软化曲线。提出的损伤模型在 Abaqus 中实现,并根据实验结果进行了验证。我们提出了一种内聚相场模型来模拟纤维增强复合材料的层内断裂。为了捕捉损伤各向异性,为每个相关的复合损伤模式定义了不同的高能裂纹驱动力,以及解释材料取向相关断裂特性的结构张量。材料退化由 3 参数准二次退化函数控制,该函数可以校准为实验得出的应变软化曲线。提出的损伤模型在 Abaqus 中实现,并根据实验结果进行了验证。我们提出了一种内聚相场模型来模拟纤维增强复合材料的层内断裂。为了捕捉损伤各向异性,为每个相关的复合损伤模式定义了不同的高能裂纹驱动力,以及解释材料取向相关断裂特性的结构张量。材料退化由 3 参数准二次退化函数控制,该函数可以校准为实验得出的应变软化曲线。提出的损伤模型在 Abaqus 中实现,并根据实验结果进行了验证。材料退化由 3 参数准二次退化函数控制,该函数可以校准为实验得出的应变软化曲线。提出的损伤模型在 Abaqus 中实现,并根据实验结果进行了验证。材料退化由 3 参数准二次退化函数控制,该函数可以校准为实验得出的应变软化曲线。提出的损伤模型在 Abaqus 中实现,并根据实验结果进行了验证。
更新日期:2020-11-01
down
wechat
bug