当前位置: X-MOL 学术Atmos. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the aerodynamic fog collection efficiency of fog water collectors via three-dimensional numerical simulations
Atmospheric Research ( IF 4.5 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.atmosres.2020.105123
Danilo Carvajal , Luis Silva-Llanca , Dante Larraguibel , Bastián González

Abstract Fog water collection gained interest in recent years as an emerging solution for water scarcity in arid and semi-arid areas. During a fog event, a porous mesh screen of plastic polymer retains the water through droplet impaction, where the droplets coalesce and trickle into a gutter for collection. This type of collecting system has existed since the 1960s; however, a substantial lack of understanding remains as to the aerodynamics that dominates the collection phenomena. The Aerodynamic Collection Efficiency (ηa) is the determining factor in the overall performance of such systems. This paper aims to further the fundamental knowledge on the aerodynamic behavior during fog collection. For this, a three-dimensional computational fluid dynamics model was developed, where the collector's mesh was modeled as a porous medium, which simulates a conventional two-dimensional double layer mesh. A parametric study was carried out varying the mesh's geometric characteristics (flat and concave), mesh-to-ground distance, and wind speed. The effect of wind speed on aerodynamic collection efficiency is mainly determined by the relative relationship between the viscous and inertial pressure drop in the porous medium. A greater curvature reduces the mesh's airflow impedance, leading to a significant improvement of the aerodynamic collection efficiency. Within the parameter range of our study, we found a maximum aerodynamic collection efficiency of 35% for the largest curvature (1.1 m), the highest mesh-to-ground distance (2 m), and the maximum wind speed (5 to 7 m s−1).

中文翻译:

基于三维数值模拟的雾集水器气动集雾效率

摘要 近年来,雾水收集作为干旱和半干旱地区缺水的新兴解决方案引起了人们的兴趣。在雾事件期间,塑料聚合物多孔筛网通过水滴撞击保留水,水滴在那里聚结并滴入排水沟进行收集。这种类型的收集系统自 1960 年代就已存在;然而,对于主导收集现象的空气动力学仍然缺乏了解。空气动力学收集效率 (ηa) 是此类系统整体性能的决定性因素。本文旨在进一步了解雾收集过程中的空气动力学行为的基础知识。为此,开发了一个三维计算流体动力学模型,其中收集器的网格被建模为多孔介质,它模拟了传统的二维双层网格。进行了参数化研究,改变了网格的几何特征(平面和凹面)、网格到地面的距离和风速。风速对气动收集效率的影响主要取决于多孔介质中粘性和惯性压降的相对关系。更大的曲率降低了网格的气流阻抗,从而显着提高了空气动力学收集效率。在我们研究的参数范围内,我们发现最大曲率 (1.1 m)、最大网格到地面距离 (2 m) 和最大风速 (5 到 7 ms) 的最大空气动力学收集效率为 35% -1). 进行了参数化研究,改变了网格的几何特征(平面和凹面)、网格到地面的距离和风速。风速对气动收集效率的影响主要取决于多孔介质中粘性和惯性压降的相对关系。更大的曲率降低了网格的气流阻抗,从而显着提高了空气动力学收集效率。在我们研究的参数范围内,我们发现最大曲率 (1.1 m)、最大网格到地面距离 (2 m) 和最大风速 (5 到 7 ms) 的最大空气动力学收集效率为 35% -1). 进行了参数化研究,改变了网格的几何特征(平面和凹面)、网格到地面的距离和风速。风速对气动收集效率的影响主要取决于多孔介质中粘性和惯性压降的相对关系。更大的曲率降低了网格的气流阻抗,从而显着提高了空气动力学收集效率。在我们研究的参数范围内,我们发现最大曲率 (1.1 m)、最大网格到地面距离 (2 m) 和最大风速 (5 到 7 ms) 的最大空气动力学收集效率为 35% -1). 风速对气动收集效率的影响主要取决于多孔介质中粘性压降与惯性压降的相对关系。更大的曲率降低了网格的气流阻抗,从而显着提高了空气动力学收集效率。在我们研究的参数范围内,我们发现最大曲率 (1.1 m)、最大网格到地面距离 (2 m) 和最大风速 (5 到 7 ms) 的最大空气动力学收集效率为 35% -1). 风速对气动收集效率的影响主要取决于多孔介质中粘性和惯性压降的相对关系。更大的曲率降低了网格的气流阻抗,从而显着提高了空气动力学收集效率。在我们研究的参数范围内,我们发现最大曲率 (1.1 m)、最大网格到地面距离 (2 m) 和最大风速 (5 到 7 ms) 的最大空气动力学收集效率为 35% -1).
更新日期:2020-11-01
down
wechat
bug