当前位置: X-MOL 学术Multibody Syst. Dyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Space robot motion planning in the presence of nonconserved linear and angular momenta
Multibody System Dynamics ( IF 2.6 ) Pub Date : 2020-07-07 , DOI: 10.1007/s11044-020-09753-x
Fatina Liliana Basmadji , Karol Seweryn , Jurek Z. Sasiadek

On-orbit servicing, active debris removal or assembling large structures on orbit are only some of the tasks that could be accomplished by space robots. In all these cases, a contact between a space robot and the satellite being serviced, deorbited, or assembled will occur. This contact results in a contact force exerted on the space robot, and therefore momenta of the space robot system are no longer conserved. Most of the papers that are concerned with motion planning problems of a space robot manipulator either consider that no external forces or moments are acting on the space robot system or use additional controllers when the space robot is subjected to external forces and moments. Such a controller minimizes end-effector position and orientation errors caused by the changes in system momenta due to external forces and moments acting on this system. The novelty of this work is that it proposes a new method for planning the motion of dual-arm space robot manipulators when linear and angular momenta of the space robot system are not conserved due to external forces and moments acting on the space robot base or/and manipulators’ end-effectors. In the proposed method the changes in system momenta are considered, but no additional controllers are needed. In this paper, we derive the motion planning equations for dual-arm space robot manipulators, where external forces and moments are acting on both satellite and manipulator end-effectors. The proposed method has been verified by numerical simulations, and the results are presented and discussed.

中文翻译:

存在不守恒的线性和角动量的空间机器人运动计划

在轨维修,主动清除碎片或在轨道上组装大型结构只是太空机器人可以完成的部分任务。在所有这些情况下,太空机器人与正在维修,轨道运行或组装的卫星之间都会发生接触。这种接触导致施加在空间机器人上的接触力,因此不再保留空间机器人系统的力矩。与空间机器人操纵器的运动计划问题有关的大多数论文都认为,空间机器人系统上没有作用外力或力矩,或者在空间机器人受到外力和力矩时使用其他控制器。这种控制器可将因外力和作用在该系统上的力矩而引起的系统力矩变化所引起的末端执行器位置和方向误差降至最低。这项工作的新颖性在于,它提出了一种新的方法,用于在由于外力和作用在空间机器人基座上的力矩或力矩而导致空间机器人系统的线性和角力矩不守恒时,规划双臂空间机器人操纵器的运动和机械手的末端执行器。在所提出的方法中,考虑了系统动量的变化,但是不需要额外的控制器。在本文中,我们导出了双臂空间机器人机械手的运动规划方程,其中外力和力矩作用在卫星和机械手的末端执行器上。数值模拟验证了该方法的有效性,
更新日期:2020-07-07
down
wechat
bug