当前位置: X-MOL 学术Cell. Mol. Neurobiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exogenous Adenosine Antagonizes Excitatory Amino Acid Toxicity in Primary Astrocytes.
Cellular and Molecular Neurobiology ( IF 3.6 ) Pub Date : 2020-07-06 , DOI: 10.1007/s10571-020-00876-5
Yingjiao Liu 1, 2 , Shifeng Chu 2 , Yaomei Hu 1 , Songwei Yang 1 , Xun Li 1, 2 , Qinglian Zheng 3 , Qidi Ai 1 , Siyu Ren 1 , Huiqin Wang 1 , Limin Gong 1 , Xin Xu 3 , Nai-Hong Chen 1, 2, 3
Affiliation  

Excitatory toxicity is still a hot topic in the study of ischemic stroke, and related research has focused mainly on neurons. Adenosine is an important neuromodulator that is known as a “biosignature” in the central nervous system (CNS). The protective effect of exogenous adenosine on neurons has been confirmed, but its mechanism remains elusive. In this study, astrocytes were pretreated with adenosine, and the effects of an A2a receptor (A2aR) inhibitor (SCH58261) and A2b receptor (A2bR) inhibitor (PSB1115) on excitatory glutamate were investigated. An oxygen glucose deprivation/reoxygenation (OGD/R) and glutamate model was generated in vitro. Post-model assessment included expression levels of glutamate transporters (glt-1), gap junction protein (Cx43) and glutamate receptor (AMPAR), Na+-K+-ATPase activity, and diffusion distance of dyes. Glutamate and glutamine contents were determined at different time points. The results showed that (1) adenosine could improve the function of Na+-K+-ATPase, upregulate the expression of glt-1, and enhance the synthesis of glutamine in astrocytes. This effect was associated with A2aR activation but not with A2bR activation. (2) Adenosine could inhibit the expression of gap junction protein (Cx43) and reduce glutamate diffusion. Inhibition of A2aR attenuated adenosine inhibition of gap junction intercellular communication (GJIC) in the OGD/R model, while it enhanced adenosine inhibition of GJIC in the glutamate model, depending on the glutamate concentration. (3) Adenosine could cause AMPAR gradually entered the nucleus from the cytoplasm, thereby reducing the expression of AMPAR on the cell membrane. Taken together, the results indicate that adenosine plays a role of anti-excitatory toxicity effect in protection against neuronal death and the functional recovery of ischemic stroke mainly by targeting astrocytes, which are closely related to A2aR. The present study provided a scientific basis for adenosine prevention and ischemic stroke treatment, thereby providing a new approach for alleviating ischemic stroke.



中文翻译:


外源性腺苷拮抗原代星形胶质细胞中的兴奋性氨基酸毒性。



兴奋性毒性仍然是缺血性脑卒中研究的热点,相关研究主要集中在神经元上。腺苷是一种重要的神经调节剂,被称为中枢神经系统(CNS)中的“生物印记”。外源性腺苷对神经元的保护作用已被证实,但其机制仍不清楚。在本研究中,用腺苷预处理星形胶质细胞,并研究 A2a 受体 (A2aR) 抑制剂 (SCH58261) 和 A2b 受体 (A2bR) 抑制剂 (PSB1115) 对兴奋性谷氨酸的影响。体外生成氧葡萄糖剥夺/复氧(OGD/R)和谷氨酸模型。模型后评估包括谷氨酸转运蛋白(glt-1)、间隙连接蛋白(Cx43)和谷氨酸受体(AMPAR)的表达水平、Na + -K + -ATP酶活性和染料的扩散距离。在不同时间点测定谷氨酸和谷氨酰胺含量。结果表明:(1)腺苷可以改善星形胶质细胞Na + -K + -ATP酶的功能,上调glt-1的表达,增强星形胶质细胞谷氨酰胺的合成。该效应与 A2aR 激活相关,但与 A2bR 激活无关。 (2)腺苷可抑制间隙连接蛋白(Cx43)的表达,减少谷氨酸扩散。在 OGD/R 模型中,A2aR 的抑制减弱了腺苷对间隙连接细胞间通讯 (GJIC) 的抑制,而在谷氨酸模型中,它增强了腺苷对 GJIC 的抑制,具体取决于谷氨酸浓度。 (3)腺苷可使AMPAR逐渐从细胞质进入细胞核,从而减少细胞膜上AMPAR的表达。 综上所述,结果表明,腺苷主要通过靶向与A2aR密切相关的星形胶质细胞,在防止神经元死亡和缺血性中风功能恢复中发挥抗兴奋性毒性作用。本研究为腺苷预防和治疗缺血性脑卒中提供了科学依据,从而为缓解缺血性脑卒中提供了新途径。

更新日期:2020-07-07
down
wechat
bug