当前位置: X-MOL 学术Phys. Rev. E › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Chemical-potential multiphase lattice Boltzmann method with superlarge density ratios.
Physical Review E ( IF 2.2 ) Pub Date : 2020-07-06 , DOI: 10.1103/physreve.102.013303
Binghai Wen 1 , Liang Zhao 2 , Wen Qiu 1 , Yong Ye 1 , Xiaowen Shan 3
Affiliation  

The liquid-gas density ratio is a key property of multiphase flow methods to model real fluid systems. Here, a chemical-potential multiphase lattice Boltzmann method is constructed to realize extremely large density ratios. The simulations show that the method reaches very low temperatures, at which the liquid-gas density ratio is more than 1014, while the thermodynamic consistency is still preserved. Decoupling the mesh space from the momentum space through a proportional coefficient, a smaller mesh step provides denser lattice nodes to exactly describe the transition region and the resulting dimensional transformation has no loss of accuracy. A compact finite-difference method is applied to calculate the discrete derivatives in the mesh space with high-order accuracy. These enhance the computational accuracy of the nonideal force and suppress the spurious currents to a very low level, even if the density ratio is up to tens of thousands. The simulation of drop splashing verifies that the present model is Galilean invariant for the dynamic flow field. An upper limit of the chemical potential is used to reduce the influence of nonphysical factors and improve the stability.

中文翻译:

具有超大密度比的化学势多相晶格Boltzmann方法。

液-气密度比是模拟实际流体系统的多相流方法的关键特性。在此,构造化学势多相晶格玻尔兹曼方法以实现极大的密度比。仿真表明,该方法达到了非常低的温度,在该温度下液气密度比大于1014,同时仍然保持热力学一致性。通过比例系数将网格空间与动量空间解耦,较小的网格步长提供了较密的晶格节点,可以准确地描述过渡区域,并且所得的尺寸变换不会损失准确性。应用紧凑的有限差分方法以高阶精度计算网格空间中的离散导数。即使密度比高达几万,这些也可以提高非理想力的计算精度并将杂散电流抑制到非常低的水平。液滴飞溅的仿真验证了该模型对于动态流场是伽利略不变的。化学势的上限用于减少非物理因素的影响并提高稳定性。
更新日期:2020-07-06
down
wechat
bug