当前位置: X-MOL 学术Int. J. Vent. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The contribution of a solar air heater collector to the cooling load in a building
International Journal of Ventilation ( IF 1.1 ) Pub Date : 2020-07-06 , DOI: 10.1080/14733315.2020.1777654
Pavlos Toumpoulidis 1 , Argiro Dimoudi 1 , Panos Kosmopoulos 2 , Stamatis Zoras 1
Affiliation  

Abstract

Over the last few decades, there is a clear target for reducingenergy needs in the building sector. The above objective can be achieved both by renovating the existing building stock and/or by constructing new buildings that will meet the characteristics of zero or nearly zero energy buildings. In order to construct or renovate a building into a zero or almost zero energy building, different passive, active and hybrid systems can be used. One such system is a solar air heater collector. The above system was installed in the south facade of the outdoor test cell (ZED-KIM (Zero Energy Demand – Kimmeria)), located at the Campus of the Environmental Engineering School, DUTH at Xanthi (Greece). In the present study, the monitoring results of the solar air heater collector and its contribution to cover the cooling load of a building will be presented. The system was monitored under real weather conditions for the period June 2017 to August 2017. This period was separated in two sub-periods. In the first one, the system operated as a solar air heater and with the appropriate modifications air from inside the test cell was passed through solar collector and hot air was rejected out. In the second sub-period, a ventilation inlet was added in the north facade of the test cell, and the system operated as a solar chimney. The heating load that rejected out in the first sub-period was 12 KWh and in the second sub-period was 58.5 KWh. In other terms the cooling load of the test cell was reduced by 70.5 KWh for the whole period of measurements. In addition the cooling load for the specific climate zone of Greece and for 20 m2 cooling space was 488 KWh so there was a reduction of 15 percent. Furthermore, it was noticed that the thermal efficiency of the system increased above 50 percent between 1st and 2nd sub period, with values being 16% and 34% respectively. Based on the above results, it is concluded that even in hot weather conditions prevailing in northern Greece, the use of a solar air heater collector with the appropriate modifications can cover, in a significant degree, the cooling load of a building and in conjunction with other passive and active systems it can lead at a nearly zero energy building.



中文翻译:

太阳能空气加热器集热器对建筑物冷负荷的贡献

摘要

在过去的几十年里,建筑行业有一个明确的减少能源需求的目标。上述目标可以通过改造现有建筑和/或建造满足零或接近零能耗建筑特征的新建筑来实现。为了将建筑物建造或翻新成零能耗或几乎零能耗的建筑,可以使用不同的被动、主动和混合系统。一种这样的系统是太阳能空气加热器收集器。上述系统安装在室外测试单元 (ZED-KIM (Zero Energy Demand – Kimmeria)) 的南立面,该单元位于希腊 Xanthi 的 DUTH 环境工程学院校园。在本研究中,将介绍太阳能空气加热器集热器的监测结果及其对覆盖建筑物冷负荷的贡献。该系统在 2017 年 6 月至 2017 年 8 月期间的真实天气条件下进行了监测。这一时期分为两个子时期。在第一个中,该系统作为太阳能空气加热器运行,经过适当修改后,来自测试电池内部的空气通过太阳能集热器,热空气被排出。在第二个子周期中,在测试单元的北立面增加了一个通风口,该系统作为太阳能烟囱运行。第一个子周期剔除的热负荷为 12 千瓦时,第二个子周期为 58.5 千瓦时。换言之,在整个测量期间,测试单元的冷却负载降低了 70.5 KWh。此外,希腊特定气候区的冷负荷和 20 m 该系统作为太阳能空气加热器运行,经过适当修改后,来自测试电池内部的空气通过太阳能集热器,热空气被排出。在第二个子周期中,在测试单元的北立面增加了一个通风口,该系统作为太阳能烟囱运行。第一个子周期剔除的热负荷为 12 千瓦时,第二个子周期为 58.5 千瓦时。换言之,在整个测量期间,测试单元的冷却负载降低了 70.5 KWh。此外,希腊特定气候区的冷负荷和 20 m 该系统作为太阳能空气加热器运行,经过适当修改后,来自测试电池内部的空气通过太阳能集热器,热空气被排出。在第二个子周期中,在测试单元的北立面增加了一个通风口,该系统作为太阳能烟囱运行。第一个子周期剔除的热负荷为 12 千瓦时,第二个子周期为 58.5 千瓦时。换言之,在整个测量期间,测试单元的冷却负载降低了 70.5 KWh。此外,希腊特定气候区的冷负荷和 20 m 在测试单元的北立面增加了一个通风口,该系统作为太阳能烟囱运行。第一个子周期剔除的热负荷为 12 千瓦时,第二个子周期为 58.5 千瓦时。换言之,在整个测量期间,测试单元的冷却负载降低了 70.5 KWh。此外,希腊特定气候区的冷负荷和 20 m 在测试单元的北立面增加了一个通风口,该系统作为太阳能烟囱运行。第一个子周期剔除的热负荷为 12 千瓦时,第二个子周期为 58.5 千瓦时。换言之,在整个测量期间,测试单元的冷却负载降低了 70.5 KWh。此外,希腊特定气候区的冷负荷和 20 m2冷却空间为 488 千瓦时,因此减少了 15%。此外,可以注意到,该系统的热效率的上述1至50%的增加的第一和2的子周期,其值分别为16%和34%。基于上述结果,得出的结论是,即使在希腊北部盛行的炎热天气条件下,使用经过适当修改的太阳能空气加热器集热器也可以在很大程度上覆盖建筑物的冷负荷,并结合其他被动和主动系统,它可以引领几乎零能耗的建筑。

更新日期:2020-07-06
down
wechat
bug