当前位置: X-MOL 学术Biomed. Eng. Biomed. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A microelectromechanical system (MEMS) capacitive accelerometer-based microphone with enhanced sensitivity for fully implantable hearing aid: a novel analytical approach.
Biomedical Engineering / Biomedizinische Technik ( IF 1.3 ) Pub Date : 2020-07-03 , DOI: 10.1515/bmt-2017-0183
Apoorva Dwivedi 1 , Gargi Khanna 1
Affiliation  

The present work proposes a novel, compact, intuitively simple and efficient structure to improve the sensitivity of a microelectromechanical system (MEMS) capacitive accelerometer using an arrangement of microlever as a displacement amplifier. The accelerometer is proposed to serve as a microphone in the fully implantable cochlear prosthetic system which can be surgically implanted at the middle ear bone structure. Therefore, the design parameters such as size, weight and resonant frequency require deliberation. The paper presents a novel analytical model considering the impact of the mechanical amplification along with the width of the microlever and the capacitive fringe effects on the performance of the sensor. The design is simulated and verified using COMSOL MULTIPHYSICS 4.2. The accelerometer is designed within a sensing area of 1 mm2 and accomplishes a nominal capacitance of 4.85 pF and an excellent sensitivity of 5.91 fF/g.

中文翻译:


一种基于微机电系统 (MEMS) 电容式加速度计的麦克风,具有增强的灵敏度,适用于完全植入式助听器:一种新颖的分析方法。



目前的工作提出了一种新颖、紧凑、直观简单且高效的结构,以提高使用微杠杆布置作为位移放大器的微机电系统(MEMS)电容式加速度计的灵敏度。建议将加速度计用作完全植入式人工耳蜗系统中的麦克风,该系统可以通过手术植入中耳骨结构。因此,尺寸、重量和谐振频率等设计参数需要深思熟虑。本文提出了一种新颖的分析模型,考虑了机械放大以及微杠杆宽度的影响以及电容边缘效应对传感器性能的影响。使用 COMSOL MULTIPHYSICS 4.2 对设计进行仿真和验证。该加速度计设计在1 mm 2的传感区域内,实现了4.85 pF 的标称电容和5.91 fF/g 的出色灵敏度。
更新日期:2020-07-03
down
wechat
bug