当前位置: X-MOL 学术Adv. Mater. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microtransfer Printing High‐Efficiency GaAs Photovoltaic Cells onto Silicon for Wireless Power Applications
Advanced Materials Technologies ( IF 6.4 ) Pub Date : 2020-07-06 , DOI: 10.1002/admt.202000048
Ian Mathews 1 , David Quinn 1 , John Justice 1 , Agnieszka Gocalinska 1 , Emanuele Pelucchi 1 , Ruggero Loi 1 , James O'Callaghan 1 , Brian Corbett 1
Affiliation  

Here, the development of high‐efficiency microscale gallium arsenide (GaAs) laser power converters, and their successful transfer printing onto silicon substrates is reported, presenting a unique, high power, low‐cost, and integrated power supply solution for implantable electronics, autonomous systems, and Internet of Things (IoT) applications. 300 µm diameter single‐junction GaAs laser power converters are presented and the transfer printing of these devices to silicon is successfully demonstrated using a polydimethylsiloxane stamp, achieving optical power conversion efficiencies of 49% and 48% under 35 and 71 W cm−2 808 nm laser illumination respectively. The transferred devices are coated with indium tin oxide (ITO) to increase current spreading and are shown to be capable of handling very high short‐circuit current densities up to 70 A cm−2 under 141 W cm−2 illumination intensity (≈1400 Suns), while their open circuit voltage reaches 1235 mV, exceeding the values of pretransfer devices indicating the presence of photon recycling. These optical power sources could deliver Watts of power to sensors and systems in locations where wired power is not an option, while using a massively parallel, scalable, and low‐cost fabrication method for the integration of dissimilar materials and devices.

中文翻译:

通过微转移将高效GaAs光伏电池印刷到硅上以用于无线电源应用

此处报道了高效微型砷化镓(GaAs)激光功率转换器的开发及其在硅衬底上的成功转移印刷,为自主研发的可植入电子产品提供了独特的,高功率,低成本和集成电源解决方案系统和物联网(IoT)应用程序。介绍了直径为300 µm的单结GaAs激光功率转换器,并使用聚二甲基硅氧烷印模成功演示了这些器件向硅的转移印刷,在35 W和71 W cm -2下实现了49%和48%的光功率转换效率分别为808 nm激光照射。转移的器件涂有铟锡氧化物(ITO)以增加电流扩散,并显示出能够在141 W cm -2的光照强度下处理高达70 A cm -2的非常高的短路电流密度(≈1400太阳),而它们的开路电压达到1235 mV,超过了预传输设备的值,表明存在光子循环。这些光功率源可以为无法选择有线功率的位置的传感器和系统提供功率,同时使用大规模并行,可扩展且低成本的制造方法来集成异种材料和设备。
更新日期:2020-08-10
down
wechat
bug