当前位置: X-MOL 学术Mech. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Grain-size effect on plastic flow stress of nanolaminated polycrystalline aluminum/graphene composites
Mechanics of Materials ( IF 3.4 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.mechmat.2020.103530
Xiaohuan Zhou , Xia Liu , Junjun Shang , Qingsheng Yang

Abstract Nanolaminated metal/graphene composites can have many special mechanical properties, thanks to a high density of interfaces. Even though the interface effect is a key mechanism for the propagation of dislocations in nanolaminated metal/graphene composites, it is not well understood. In this paper, simulations of the molecular dynamics of nanolaminated polycrystalline aluminum/graphene (PAl/Gr) composites are performed. The results provide insight into the grain-size effect on plastic flow stress of nanolaminated PAl/Gr composites and the underlying mechanism. Extended dislocations are found to dominate the plastic deformation of the PAl/Gr composites. Both the PAl/Gr interface and the Al grain boundaries (GBs) interact with the dislocations. Three dislocation propagation forms are observed in the PAl/Gr nanolaminated composite based on the Al grain-size. By decreasing the laminate thickness, the dislocation-GB interaction can transition to a dislocation-graphene interaction. When the Al layer thickness is smaller than the in-plane grain size, the strain-hardening capability is increased due to greater ability of the dislocation/graphene-interface to store dislocations than the GBs. Besides, geometrically necessary dislocations are induced because of the deformation gradient between the graphene and Al grains, which lead to back-stress strengthening and thus strain hardening. Accordingly, a confined layer slip mechanism, which considers back-stress, is used to predict the flow stress of the PAl/Gr composites.

中文翻译:

晶粒尺寸对纳米层压多晶铝/石墨烯复合材料塑性流动应力的影响

摘要 由于界面密度高,纳米层压金属/石墨烯复合材料可以具有许多特殊的机械性能。尽管界面效应是纳米层压金属/石墨烯复合材料中位错传播的关键机制,但人们对此并不十分了解。在本文中,对纳米层压多晶铝/石墨烯 (PAl/Gr) 复合材料的分子动力学进行了模拟。结果提供了对晶粒尺寸对纳米层压 PAl/Gr 复合材料塑性流动应力的影响及其潜在机制的见解。发现扩展位错在 PAl/Gr 复合材料的塑性变形中占主导地位。PAl/Gr 界面和 Al 晶界 (GB) 都与位错相互作用。基于Al晶粒尺寸,在PAl/Gr纳米层压复合材料中观察到三种位错传播形式。通过减小层压板厚度,位错-GB 相互作用可以转变为位错-石墨烯相互作用。当Al层厚度小于面内晶粒尺寸时,由于位错/石墨烯界面比GBs更大的存储位错的能力,应变硬化能力增加。此外,由于石墨烯和铝晶粒之间的变形梯度,会引起几何上必要的位错,导致背应力强化,从而导致应变硬化。因此,考虑了背应力的受限层滑移机制用于预测 PAl/Gr 复合材料的流动应力。位错-GB 相互作用可以转变为位错-石墨烯相互作用。当Al层厚度小于面内晶粒尺寸时,由于位错/石墨烯界面比GBs更大的存储位错的能力,应变硬化能力增加。此外,由于石墨烯和铝晶粒之间的变形梯度,会引起几何上必要的位错,导致背应力强化,从而导致应变硬化。因此,考虑了背应力的受限层滑移机制用于预测 PAl/Gr 复合材料的流动应力。位错-GB 相互作用可以转变为位错-石墨烯相互作用。当Al层厚度小于面内晶粒尺寸时,由于位错/石墨烯界面比GBs更大的存储位错的能力,应变硬化能力增加。此外,由于石墨烯和铝晶粒之间的变形梯度,会引起几何上必要的位错,导致背应力强化,从而导致应变硬化。因此,考虑了背应力的受限层滑移机制用于预测 PAl/Gr 复合材料的流动应力。由于位错/石墨烯界面存储位错的能力比 GB 更强,应变硬化能力得到提高。此外,由于石墨烯和铝晶粒之间的变形梯度,会引起几何上必要的位错,导致背应力强化,从而导致应变硬化。因此,考虑了背应力的受限层滑移机制用于预测 PAl/Gr 复合材料的流动应力。由于位错/石墨烯界面存储位错的能力比 GB 更强,应变硬化能力得到提高。此外,由于石墨烯和铝晶粒之间的变形梯度,会引起几何上必要的位错,导致背应力强化,从而导致应变硬化。因此,考虑了背应力的受限层滑移机制用于预测 PAl/Gr 复合材料的流动应力。
更新日期:2020-09-01
down
wechat
bug