当前位置: X-MOL 学术Synth. Met. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self-discharge characteristics of vapor deposited polymer electrodes in an all-textile supercapacitor
Synthetic Metals ( IF 4.0 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.synthmet.2020.116483
Wesley Viola , Chang Jin , Trisha L. Andrew

Abstract Despite the many efforts put toward developing flexible supercapacitors for wearable technology, few studies have focused on self-discharge, the spontaneous voltage decay of devices stored in their charged state. In this work, we characterize the self-discharge behavior of an all-textile supercapacitor utilizing oxidative chemical vapor deposited (oCVD) PEDOT-Cl electrodes. A significant portion of the voltage losses are found to arise from charge redistribution, a physical process involving the rearrangement of charges within the electrode material. Two means of mitigating this mode of self-discharge are presented. A post-charging hold step improves voltage retention by enabling spatially-uniform charge distribution within the electrode. Improving the ordering of polymer crystal domains via control over the polymer growth temperature during oCVD is also found to impact the self-discharge rate. Electrochemical and morphological characterizations of films grown at high and low temperature indicate that more ordered polymer films exhibit less self-discharge due to charge redistribution, perhaps a result of greater charge accessibility throughout the film. These results, including improved charging protocols and material optimizations, may help pave the way for practical, lightweight charge storage devices to power wearable electronics.

中文翻译:

全纺织超级电容器中气相沉积聚合物电极的自放电特性

摘要 尽管在开发用于可穿戴技术的柔性超级电容器方面付出了很多努力,但很少有研究关注自放电,即存储在充电状态下的设备的自发电压衰减。在这项工作中,我们利用氧化化学气相沉积 (oCVD) PEDOT-Cl 电极表征了全纺织超级电容器的自放电行为。发现很大一部分电压损失是由电荷重新分布引起的,这是一种涉及电极材料内电荷重新排列的物理过程。提出了两种减轻这种自放电模式的方法。充电后保持步骤通过在电极内实现空间均匀的电荷分布来提高电压保持率。还发现通过控制 oCVD 期间的聚合物生长温度来改善聚合物晶体域的排序也会影响自放电速率。在高温和低温下生长的薄膜的电化学和形态特征表明,由于电荷重新分布,更有序的聚合物薄膜表现出较少的自放电,这可能是整个薄膜中更大的电荷可及性的结果。这些结果,包括改进的充电协议和材料优化,可能有助于为实用、轻便的电荷存储设备为可穿戴电子设备供电铺平道路。也许是因为整部电影的电荷可及性更高。这些结果,包括改进的充电协议和材料优化,可能有助于为实用、轻便的电荷存储设备为可穿戴电子设备供电铺平道路。也许是因为整部电影的电荷可及性更高。这些结果,包括改进的充电协议和材料优化,可能有助于为实用、轻便的电荷存储设备为可穿戴电子设备供电铺平道路。
更新日期:2020-10-01
down
wechat
bug