当前位置: X-MOL 学术Sol. Energy Mater. Sol. Cells › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Melamine-formaldehyde microencapsulated n-Tetracosane phase change material for solar thermal energy storage in coating
Solar Energy Materials and Solar Cells ( IF 6.3 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.solmat.2020.110676
Amol Tarachand Naikwadi , Asit B. Samui , Prakash A. Mahanwar

Abstract This work aims to prepare potential solar thermal energy storage coating using melamine-formaldehyde (MF) microcapsules with an n-Tetracosane (n-Tetra) core as phase change material (PCM). The shell material was prepared by reacting melamine with formaldehyde using a two-step process. After centrifuging and drying, these microcapsules were incorporated (0–25 wt%) into an epoxy primer-polyurethane (EP-PU) topcoat system for thermal energy storage applications. The microcapsules were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Polarized Optical Microscopy (POM) & Scanning Electron Microscopy (SEM), respectively. n-Tetra, incorporated in the microcapsule (MF-n-Tetra), has been found to melt at 53.07 °C with the latent heat of melting 134.74 J/g and crystallizes at 48.81 with latent heat crystallization 133.32 J/g. The phase change properties of the coated material were found to increase with the increase in the microcapsule loading. The thermal energy transfer rate was quantified in terms of the time taken by the coated panels to reach an equilibrium temperature of 60 °C. The microcapsule incorporated coatings were also subjected to salt spray analysis to understand any potential effects of phase change material (PCM) loading on the corrosion resistance aspect of the primer-topcoat system. The corrosion resistance was found to increase with microcapsule addition. Thermogravimetric Analysis (TGA) indicated enhanced thermal stability of Tetra in the microcapsule.

中文翻译:

三聚氰胺-甲醛微胶囊正四十二烷相变材料用于涂料中的太阳能热能存储

摘要 本工作旨在利用三聚氰胺-甲醛 (MF) 微胶囊作为相变材料 (PCM),以正四十二烷 (n-Tetra) 为核心,制备具有潜力的太阳能热储能涂层。外壳材料是通过使用两步法使三聚氰胺与甲醛反应来制备的。离心和干燥后,将这些微胶囊(0-25%)掺入环氧底漆-聚氨酯(EP-PU)面漆系统中,用于热能储存应用。分别使用傅里叶变换红外光谱 (FTIR)、差示扫描量热法 (DSC)、偏振光学显微镜 (POM) 和扫描电子显微镜 (SEM) 对微胶囊进行表征。n-Tetra,掺入微胶囊 (MF-n-Tetra),已发现在 53.07 °C 熔化,熔化潜热为 134.74 J/g,并在 48 ℃结晶。81 潜热结晶 133.32 J/g。发现涂层材料的相变特性随着微胶囊负载的增加而增加。热能传递率根据涂层板达到 60°C 的平衡温度所需的时间进行量化。还对掺入微胶囊的涂层进行了盐雾分析,以了解相变材料 (PCM) 负载对底漆-面漆系统的耐腐蚀性方面的任何潜在影响。发现耐腐蚀性随着微胶囊的加入而增加。热重分析 (TGA) 表明 Tetra 在微胶囊中的热稳定性增强。发现涂层材料的相变特性随着微胶囊负载的增加而增加。热能传递率根据涂层板达到 60°C 的平衡温度所需的时间进行量化。还对掺入微胶囊的涂层进行了盐雾分析,以了解相变材料 (PCM) 负载对底漆-面漆系统的耐腐蚀性方面的任何潜在影响。发现耐腐蚀性随着微胶囊的加入而增加。热重分析 (TGA) 表明 Tetra 在微胶囊中的热稳定性增强。发现涂层材料的相变特性随着微胶囊负载的增加而增加。热能传递率根据涂层板达到 60°C 的平衡温度所需的时间进行量化。还对掺入微胶囊的涂层进行了盐雾分析,以了解相变材料 (PCM) 负载对底漆-面漆系统的耐腐蚀性方面的任何潜在影响。发现耐腐蚀性随着微胶囊的加入而增加。热重分析 (TGA) 表明 Tetra 在微胶囊中的热稳定性增强。还对掺入微胶囊的涂层进行了盐雾分析,以了解相变材料 (PCM) 负载对底漆-面漆系统的耐腐蚀性方面的任何潜在影响。发现耐腐蚀性随着微胶囊的加入而增加。热重分析 (TGA) 表明 Tetra 在微胶囊中的热稳定性增强。还对掺入微胶囊的涂层进行了盐雾分析,以了解相变材料 (PCM) 负载对底漆-面漆系统的耐腐蚀性方面的任何潜在影响。发现耐腐蚀性随着微胶囊的加入而增加。热重分析 (TGA) 表明 Tetra 在微胶囊中的热稳定性增强。
更新日期:2020-09-01
down
wechat
bug