当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effectively stabilizing electrode/electrolyte interface of high-energy LiNi0.9Co0.1O2//Si–C system by simple cathode surface-coating
Nano Energy ( IF 16.8 ) Pub Date : 2020-07-04 , DOI: 10.1016/j.nanoen.2020.105065
Ran Wang , Jing Wang , Shi Chen , Qiang Yuan , Danhua Li , Xiaoyan Zhang , Lai Chen , Yuefeng Su , Guoqiang Tan , Feng Wu

Despite the high energy density, LiNi0.9Co0.1O2//Si–C batteries suffer from severe structural instability of electrodes and their interfaces with electrolyte, leading to rapid performance degradation. Here we report a simple surface-coating method for constructing a multifunctional aminosilica-like skin on LiNi0.9Co0.1O2 cathodes using coordination mechanism. The conformal aminosilica-like skin provides fast Li-ion and charge transport channels at the cathode surface, significantly suppresses undesired layered to spinel/rock-salt phase transformations and dissolution of transition metals from the cathode and subsequent migration to anode, and effectively stabilizes both cathode/electrolyte and anode/electrolyte interfaces as well as the bulk electrodes. This approach remarkably enhances the cyclability of LiNi0.9Co0.1O2//Si-Graphite full-cell, which shows a high reversible capacity of 200 mAh g−1 and stable cycling performance (83% retention for 300 cycles at 1 C rate). This simple, efficient and environmentally friendly cathode surface-engineering offers a promising design strategy for high-energy Li-ion batteries.



中文翻译:

通过简单的阴极表面涂层有效稳定高能LiNi 0.9 Co 0.1 O 2 // Si–C系统的电极/电解质界面

尽管具有高能量密度,但LiNi 0.9 Co 0.1 O 2 // Si-C电池仍存在电极及其与电解质的界面严重的结构不稳定性,从而导致性能快速下降。在这里,我们报告了一种在LiNi 0.9 Co 0.1 O 2上构造多功能氨基二氧化硅样皮肤的简单表面涂覆方法阴极采用协调机制。保形的氨基二氧化硅样皮肤在阴极表面提供了快速的锂离子和电荷传输通道,显着抑制了不希望的分层到尖晶石/岩盐相变以及过渡金属从阴极的溶解以及随后向阳极的迁移,并有效地稳定了两者阴极/电解质和阳极/电解质界面以及主体电极。这种方法显着增强了LiNi 0.9 Co 0.1 O 2 // Si-石墨全电池的循环能力,显示出200 mAh g -1的高可逆容量和稳定的循环性能(在1 C速率下300次循环的83%保留)。这种简单,高效且环保的阴极表面工程设计为高能锂离子电池提供了一种有前途的设计策略。

更新日期:2020-07-09
down
wechat
bug