当前位置: X-MOL 学术Mater. Today Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hybrid heterostructures and devices based on two-dimensional layers and wide bandgap materials
Materials Today Nano ( IF 8.2 ) Pub Date : 2020-07-03 , DOI: 10.1016/j.mtnano.2020.100092
Z. Wu , W. Jie , Z. Yang , J. Hao

With the further development of Moore’s law, the process nodes of integrated circuit have reached 7 nm or even smaller size. In addition to the significant increase in cost, when the scale continues to shrink, there will inevitably be short channel effect. For example, because of tunneling and reduction in the separation of drain and barrier, the channel will be difficult to be completely turned off, thus reducing the switching performance of the device. Significant efforts have been dedicated for developing next-generation devices and applications to overcome these obstacles. The emerging van der Waals (vdW) heterostructures, where two-dimensional (2D) materials are physically layer by layer stacked without constraints on the chemical bonding and interfacial lattice matching, have offered an alternative platform in nanoscale electronic and optoelectronic applications. Beyond all 2D materials based vdW heterostructures, the concept could be extended to integrate 2D materials with conventional wide bandgap (WBG) functional materials. Here, we summarize recent developments of 2D-WBG hybrid heterostructures starting from the integration process and working principle. Then, we highlight the functions and device applications of 2D-WBG hybrid heterostructures, including ferroelectric gating, piezoelectric strain engineering, photodetectors, field-effect transistors, photocatalysts, and gas sensors. Finally, we provide a brief discussion on the perspectives and challenges in this exciting field.



中文翻译:

基于二维层和宽带隙材料的混合异质结构和器件

随着摩尔定律的进一步发展,集成电路的工艺节点已达到7 nm或更小。除了成本的大幅增加外,当规模继续缩小时,不可避免地会有短渠道效应。例如,由于隧穿和漏极与势垒的分离减小,将难以完全关闭沟道,从而降低了器件的开关性能。为了克服这些障碍,人们一直致力于开发下一代设备和应用程序。新兴的范德华(vdW)异质结构,其中二维(2D)材料是逐层物理堆叠的,而对化学键合和界面晶格匹配没有限制,已经为纳米级电子和光电应用提供了替代平台。除了基于vdW异质结构的所有2D材料之外,该概念还可以扩展为将2D材料与常规的宽带隙(WBG)功能材料集成在一起。在这里,我们从集成过程和工作原理出发,总结了2D-WBG混合异质结构的最新发展。然后,我们重点介绍2D-WBG混合异质结构的功能和设备应用,包括铁电门控,压电应变工程,光电探测器,场效应晶体管,光催化剂和气体传感器。最后,我们简要讨论了这个令人兴奋的领域中的观点和挑战。该概念可以扩展为将2D材料与常规宽带隙(WBG)功能材料集成在一起。在这里,我们从集成过程和工作原理出发,总结了2D-WBG混合异质结构的最新发展。然后,我们重点介绍2D-WBG混合异质结构的功能和设备应用,包括铁电门控,压电应变工程,光电探测器,场效应晶体管,光催化剂和气体传感器。最后,我们简要讨论了这个令人兴奋的领域中的观点和挑战。该概念可以扩展为将2D材料与常规宽带隙(WBG)功能材料集成在一起。在这里,我们从集成过程和工作原理出发,总结了2D-WBG混合异质结构的最新发展。然后,我们重点介绍2D-WBG混合异质结构的功能和设备应用,包括铁电门控,压电应变工程,光电探测器,场效应晶体管,光催化剂和气体传感器。最后,我们简要讨论了这个令人兴奋的领域中的观点和挑战。包括铁电门控,压电应变工程,光电探测器,场效应晶体管,光催化剂和气体传感器。最后,我们简要讨论了这个令人兴奋的领域中的观点和挑战。包括铁电门控,压电应变工程,光电探测器,场效应晶体管,光催化剂和气体传感器。最后,我们简要讨论了这个令人兴奋的领域中的观点和挑战。

更新日期:2020-07-03
down
wechat
bug