当前位置: X-MOL 学术Electrochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The sandwiched buffer zone enables porous SnO2@C micro-/nanospheres to toward high-performance lithium-ion battery anodes
Electrochimica Acta ( IF 5.5 ) Pub Date : 2020-07-04 , DOI: 10.1016/j.electacta.2020.136699
Qinghua Tian , Yanbin Chen , Zhuyin Sui , Jizhang Chen , Li Yang

With high theoretical specific capacity and relatively safe working potential, SnO2 has drawn widespread attention as a promising candidate of advanced anode for next generation lithium-ion batteries. However, the practical application of SnO2 anode in lithium-ion batteries is severely blocked by some shortcomings such as the inferior rate capability, fast capacity decay and low initial coulombic efficiency during charge/discharge process. Gratifyingly, there are many works which have demonstrated that the SnO2 anode achieves extra improvement in lithium storage performance after being reduced to nanoscale and embedded into porous carbon matrixes. Herein, porous SnO2@C micro-/nanospheres with a sandwiched buffer zone resulted from unevenly radial distribution of pores in carbon micro-/nanospheres are prepared for the first time. These SnO2@C micro-/nanospheres consist of small SnO2 nanoparticles embedded within porous carbon micro-/nanospheres with a sandwiched buffer zone. The results of this study indicate that the sandwiched buffer zone of carbon micro-/nanospheres and the confinement effect of nanopores on small SnO2 nanoparticles synergistically contribute to outstanding structural stability and excellent electrochemical performance of thus porous SnO2@C micro-/nanospheres. Besides, it is found that the lithium storage performance of the SnO2@C micro-/nanospheres can be tuned by adjusting the SnO2 contents. As a result, the as-prepared SnO2@C micro-/nanospheres with an optimalizing SnO2 content exhibit the best performance, delivering a high capacity of 955 mAh g−1 at 200 mA g−1 after 250 cycles as well as a high capacity of 836 mAh g−1 at even 1000 mA g−1 after 350 cycles.



中文翻译:

夹层缓冲带使多孔SnO 2 @C微球/纳米球能够进入高性能锂离子电池阳极

具有较高的理论比容量和相对安全的工作潜力,SnO 2作为下一代锂离子电池高级阳极的有前途的候选者已引起广泛关注。然而,SnO 2阳极在锂离子电池中的实际应用受到一些缺点的严重阻碍,例如速率/速率能力差,容量衰减快以及在充电/放电过程中初始库仑效率低。令人欣慰的是,有许多工作表明,SnO 2阳极在被还原成纳米级并嵌入多孔碳基体中后,锂的存储性能有了额外的提高。在此,多孔SnO 2首次制备了由碳微/纳米球中孔隙的径向分布不均匀导致的具有夹层缓冲带的@C微/纳米球。这些SnO 2 @C微球/纳米球由嵌入在多孔碳微球/纳米球中的小SnO 2纳米颗粒组成,中间有一个缓冲区域。这项研究的结果表明,碳微/纳米球的夹层缓冲带和纳米孔对小SnO 2纳米颗粒的约束作用协同作用,从而为多孔SnO 2 @C微/纳米球提供了出色的结构稳定性和出色的电化学性能。此外,发现SnO 2的锂存储性能可以通过调节SnO 2的含量来调节@C微球/纳米球。结果,所制备的具有最佳SnO 2含量的SnO 2 @C微球/纳米球表现出最佳性能,在250次循环后,在200 mA g -1时可提供955 mAh g -1的高容量,以及350次循环后,即使在1000 mA g -1时,也具有836 mAh g -1的高容量。

更新日期:2020-07-13
down
wechat
bug