当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Three-dimensional hollow urchin α-MnO2 for enhanced catalytic activity towards toluene decomposition in post-plasma catalysis
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2020-07-05 , DOI: 10.1016/j.cej.2020.126154
Shiling Yang , Huachao Yang , Jinyuan Yang , Hualei Qi , Jing Kong , Zheng Bo , Xiaodong Li , Jianhua Yan , Kefa Cen , Xin Tu

Complete oxidation of volatile organic compounds (VOCs) with high energy efficiency remains a challenge in post-plasma catalysis (PPC) due to insufficient adsorption towards gas and relatively low catalytic activity at room temperature. Three-dimensional (3D) hollow urchin α-MnO2 for post-plasma catalytic decomposition of toluene is demonstrated in this study. Hollow urchin catalyst assembled by well-defined one-dimensional (1D) α-MnO2 nanorods is prepared by a simple one-step hydrothermal method without any template. The toluene decomposition, CO2 selectivity and carbon balance over hollow urchin α-MnO2 reach up to ~100%, ~59% and ~81% at an SIE of 240 J L−1, which are 43%, 96% and 44% superior to that of non-thermal plasma (NTP) process, respectively. The combination of NTP with hollow urchin α-MnO2 also significantly promotes the energy efficiency by 64%, reaching 13.1 g kWh−1 at an SIE of 119 J L−1. Moreover, hollow urchin α-MnO2 exhibits higher catalytic activity for toluene decomposition and ozone conversion compared with solid urchin α-MnO2. The hollow structure with an enlarged contact surface area is expected to enhance adsorption towards gas and prolong the retention of gas on the catalyst surface. Furthermore, the fully exposed non-agglomerated 1D α-MnO2 nanorods can promote oxygen vacancy density and low-temperature reducibility, facilitating the adsorption and conversion of ozone into active oxygen species (~100% ozone conversion), which leads to the deep decomposition of toluene in PPC. This work explores a new concept in designing 3D hollow urchin nanoarchitecture as a novel catalyst for efficient plasma-catalytic gas purification.



中文翻译:

三维中空海胆α-MnO的2用于朝向在后血浆催化甲苯分解增强的催化活性

由于在室温下对气体的吸附不足和较低的催化活性,具有高能效的挥发性有机化合物(VOC)的完全氧化仍然是等离子体后催化(PPC)的挑战。三维(3D)中空海胆α-MnO的2对甲苯后血浆催化分解证明在本研究中。通过良好定义的一维(1D)α-MnO的组装中空海胆催化剂2个纳米棒由一简单的一步水热法,没有任何模板制备。甲苯分解,CO 2选择性和碳平衡过中空海胆α-MnO的2高达〜100%,〜59%和〜81%,在240 JL的SIE -1分别比非热等离子体(NTP)工艺高43%,96%和44%。NTP的空心海胆α-MnO的组合2也由64%显著促进能量效率,达到13.1克千瓦时-1在119 JL的SIE -1。此外,中空海胆α-MnO的2个表现出较高的催化对甲苯分解和臭氧转化活性与固体海胆α-MnO的比较2。预期具有增大的接触表面积的中空结构将增强对气体的吸附并延长气体在催化剂表面上的停留时间。此外,充分暴露非团聚1Dα-MnO的2纳米棒可以提高氧的空位密度和低温还原性,促进臭氧的吸附和转化为活性氧(约100%的臭氧转化),从而导致PPC中甲苯的深度分解。这项工作探索了设计3D空心urchin纳米体系结构的新概念,将其作为有效地等离子体催化气体净化的新型催化剂。

更新日期:2020-07-10
down
wechat
bug