当前位置: X-MOL 学术Biosystems › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Kinetic modelling of compartmentalised reaction networks.
Biosystems ( IF 2.0 ) Pub Date : 2020-07-04 , DOI: 10.1016/j.biosystems.2020.104203
Jan-Hendrik S Hofmeyr 1
Affiliation  

This paper presents a comprehensive treatment of kinetic modelling of compartmentalised reaction networks in the context of systems biology. There is still a lot of confusion about how to go about constructing compartment models, and many published models are flawed with respect to how they handle compartmentation. The modelling framework described here answers two key questions: Which rate laws should be used to describe the rates of reactions in compartmentalised systems? How should these rate laws be incorporated in the ordinary differential equations (ODEs) that describe the dynamics of the compartmentalised system? The framework rests on the fundamental definition of reaction rate as the number of reaction events per time, which is related to the time derivative of mole amount of reactant or product, an extensive property that is directly proportional to the size of the compartment in which the reaction events occur. This means that the rates of reactions that occur in a 3-dimensional compartment are proportional to the volume of the compartment, while the rates of transfers over a 2-dimensional compartment boundary or interface between compartments are proportional to the area of the boundary. Transfer rates are often incorrectly scaled with a volume instead of an area, and the reasons why this is wrong are extensively discussed. I also show how ‘textbook’ rate equations, which I term canonical rate equations, should be modified for compartmental modelling and how they should be incorporated into either amount-change or concentration-change ODEs.



中文翻译:

分区反应网络的动力学建模。

本文介绍了在系统生物学背景下对区室化反应网络的动力学建模的综合处理。关于如何构建隔间模型仍然存在很多混淆,并且许多已发布的模型在处理隔间模型方面存在缺陷。此处描述的建模框架回答了两个关键问题:应该使用哪些速率定律来描述分隔系统中的反应速率?应该如何将这些速率定律纳入描述分隔系统动力学的常微分方程 (ODE) 中?该框架基于反应速率的基本定义,即每次反应事件的数量,它与反应物或产物的摩尔量的时间导数有关,一种广泛的特性,与发生反应事件的隔室的大小成正比。这意味着在 3 维隔室中发生的反应速率与隔室的体积成正比,而在二维隔室边界或隔室之间的界面上的转移速率与边界面积成正比。传输速率经常被错误地用体积而不是面积来缩放,并且广泛讨论了错误的原因。我还展示了如何修改“教科书”速率方程(我称之为规范速率方程)以进行分区建模,以及如何将它们合并到数量变化或浓度变化 ODE 中。这意味着在 3 维隔室中发生的反应速率与隔室的体积成正比,而在二维隔室边界或隔室之间的界面上的转移速率与边界面积成正比。传输速率经常被错误地用体积而不是面积来缩放,并且广泛讨论了错误的原因。我还展示了如何修改“教科书”速率方程(我称之为规范速率方程)以进行分区建模,以及如何将它们合并到数量变化或浓度变化 ODE 中。这意味着在 3 维隔室中发生的反应速率与隔室的体积成正比,而在二维隔室边界或隔室之间的界面上的转移速率与边界面积成正比。传输速率经常被错误地用体积而不是面积来缩放,并且广泛讨论了错误的原因。我还展示了如何修改“教科书”速率方程(我称之为规范速率方程)以进行分区建模,以及如何将它们合并到数量变化或浓度变化 ODE 中。而在二维隔室边界或隔室之间的界面上的传输速率与边界面积成正比。传输速率经常被错误地用体积而不是面积来缩放,并且广泛讨论了错误的原因。我还展示了如何修改“教科书”速率方程(我称之为规范速率方程)以进行分区建模,以及如何将它们合并到数量变化或浓度变化 ODE 中。而在二维隔室边界或隔室之间的界面上的转移率与边界面积成正比。传输速率经常被错误地用体积而不是面积来缩放,并且广泛讨论了错误的原因。我还展示了如何修改“教科书”速率方程(我称之为规范速率方程)以进行分区建模,以及如何将它们合并到数量变化或浓度变化 ODE 中。

更新日期:2020-07-04
down
wechat
bug