当前位置: X-MOL 学术Addit. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Manufacturing and characterization of in-situ alloyed Ti6Al4V(ELI)-3 at.% Cu by laser powder bed fusion
Additive Manufacturing ( IF 10.3 ) Pub Date : 2020-07-04 , DOI: 10.1016/j.addma.2020.101436
A.M. Vilardell , I. Yadroitsev , I. Yadroitsava , M. Albu , N. Takata , M. Kobashi , P. Krakhmalev , D. Kouprianoff , G. Kothleitner , A. du Plessis

Biofunctionalization of Ti6Al4V alloy with metallic agents like Ag or Cu is a promising approach to add antibacterial properties and thus to reduce the risk of implant failure. This research investigates the in-situ alloying of Ti6Al4V(ELI) with 3 at.% Cu powders using Laser Powder Bed Fusion (L-PBF). The morphology and geometrical characteristics of the single tracks and layers were studied. Laser powers of 170 W and 340 W, and scanning speeds ranging from 0.4 to 1.4 m/s and 0.8–2.8 m/s were implemented. Single track results showed balling effect and humping at high scanning speeds, 1.4 m/s and 1.6 m/s, for each laser powder respectively. Conversely, keyhole formation occurred at lower scanning speeds of 0.4–0.6 m/s for 170 W laser power, and below and 0.8 m/s for 340 W laser power. For both laser powers, single layers resulted in smoother surfaces at lower scanning speeds. These results were used for the development of optimal process parameters for 3D cubes with 99.9 % density. Optimal process parameters were found for 170 W and 340 W laser powders at 0.7−0.9 and 1.0–1.2 m/s scanning speeds, respectively.

In-situ alloying by L-PBF was challenging and a homogeneous distribution of Cu within the alloy was hard to achieve. The increase in laser power from 170 to 340 W resulted in small increase in homogenization. Microstructural analyses after stress-relieving treatment showed the presence of α’ and β phases, as well as CuTi2 intermetallic precipitates. The finer microstructure together with CuTi2 intermetallic precipitates resulted in an increase in hardness. This study demonstrates the potential for printing in-situ alloyed Ti6Al4V(ELI)- 3 at.% Cu for biomedical applications. However, further studies are required to determine the effectiveness of antibacterial properties.



中文翻译:

激光粉末床熔合原位Ti6Al4V(ELI)-3 at。%Cu合金的制备与表征

Ti6Al4V合金与金属试剂(如银或铜)的生物功能化是增加抗菌性能并因此降低植入失败风险的一种有前途的方法。这项研究调查了原位使用激光粉末熔床(L-PBF)将Ti6Al4V(ELI)与3%的铜粉合金化。研究了单个轨道和层的形态和几何特征。激光功率分别为170 W和340 W,扫描速度范围为0.4到1.4 m / s和0.8-2.8 m / s。单磁道结果分别显示了每种激光粉在1.4 m / s和1.6 m / s的高扫描速度下的球形效应和驼峰。相反,对于170 W激光功率,锁孔的形成发生在0.4-0.6 m / s的较低扫描速度下,而对于340 W激光功率,则在0.8 m / s以下的较低扫描速度下发生。对于两种激光功率,单层都可以在较低的扫描速度下获得更平滑的表面。这些结果用于开发密度为99.9%的3D立方体的最佳工艺参数。找到了0时170 W和340 W激光粉末的最佳工艺参数。

通过L-PBF进行原位合金化具有挑战性,而且很难在合金中实现Cu的均匀分布。激光功率从170 W增加到340 W,导致均匀化的增加很小。应力消除处理后的显微组织分析表明,存在α'和β相以及CuTi 2金属间沉淀物。较细的微观结构以及CuTi 2金属间沉淀物导致硬度增加。这项研究证明了生物医学应用中印刷原位合金Ti6Al4V(ELI)-3 at。%Cu的潜力。但是,需要进一步的研究来确定抗菌性能的有效性。

更新日期:2020-07-04
down
wechat
bug