当前位置: X-MOL 学术Int. J. Appl. Electromagn. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of magnetorheological damper parameters on dynamic responses of a full-vehicle suspension system
International Journal of Applied Electromagnetics and Mechanics ( IF 1.1 ) Pub Date : 2020-07-03 , DOI: 10.3233/jae-190080
Qianjie Liu 1 , Wei Chen 1 , Huosheng Hu 2 , Guoliang Hu 3 , Qingyuan Zhu 1, 4
Affiliation  

This paper investigates how magnetorheological (MR) damper parameters affect the dynamic response of a full-vehicle suspension system in much detail. The constitutive mechanical model and characteristics of MR damper are firstly obtained and analyzed, which preferably describes the physical parametric features of MR damper. To simplify the impact analysis model, a full-vehicle control model with the PID decoupling controller based on the inverse model for MR damper is established. In line with the above developed full-vehicle model, the impact analysis of input current on the suspension dynamic responses is obtained by updating the equivalent damping coefficient of MR damper. The effect of MR damper parameters on the dynamic responses is investigated based on the RMS of the percentage-based slope, and its wear effect caused by the friction loss in practical application is also discussed. The experimental results show that the piston diameter and cylinder inner diameter have greater influence on the dynamic responses than other influence parameters include the coil turns, effective piston length and piston rod diameter. In contrast, the apparent viscosity of MR fluids has little influence on the dynamic responses. In addition, the MR semi-active suspension has better stability than the passive suspension when parameter perturbation occurs in the suspension system. It is necessary to ensure that MR damper has the suitable maximum output damping force and large enough dynamic range simultaneously.

中文翻译:

磁流变阻尼器参数对全车悬架系统动力响应的影响

本文详细研究了磁流变(MR)阻尼器参数如何影响全车悬架系统的动力响应。首先获得并分析了MR阻尼器的本构力学模型和特性,优选地描述了MR阻尼器的物理参数特征。为了简化影响分析模型,建立了基于MR阻尼器逆模型的带有PID解耦控制器的整车控制模型。与上述开发的整车模型相一致,通过更新MR阻尼器的等效阻尼系数,获得了输入电流对悬架动态响应的影响分析。基于百分比斜率的RMS,研究了MR阻尼器参数对动力响应的影响,讨论了在实际应用中由摩擦损失引起的磨损效果。实验结果表明,相比于线圈匝数,有效活塞长度和活塞杆直径等其他影响参数,活塞直径和气缸内径对动力响应的影响更大。相反,MR流体的表观粘度对动力响应影响很小。此外,当在悬架系统中发生参数扰动时,MR半主动悬架比被动悬架具有更好的稳定性。必须确保MR阻尼器同时具有合适的最大输出阻尼力和足够大的动态范围。实验结果表明,活塞直径和气缸内径对动力响应的影响大于线圈匝数,有效活塞长度和活塞杆直径等其他影响参数。相反,MR流体的表观粘度对动力响应影响很小。此外,当在悬架系统中发生参数扰动时,MR半主动悬架比被动悬架具有更好的稳定性。必须确保MR阻尼器同时具有合适的最大输出阻尼力和足够大的动态范围。实验结果表明,活塞直径和气缸内径对动力响应的影响大于线圈匝数,有效活塞长度和活塞杆直径等其他影响参数。相反,MR流体的表观粘度对动力响应影响很小。此外,当在悬架系统中发生参数扰动时,MR半主动悬架比被动悬架具有更好的稳定性。必须确保MR阻尼器同时具有合适的最大输出阻尼力和足够大的动态范围。当悬架系统发生参数扰动时,MR半主动悬架比被动悬架具有更好的稳定性。必须确保MR阻尼器同时具有合适的最大输出阻尼力和足够大的动态范围。当悬架系统发生参数扰动时,MR半主动悬架比被动悬架具有更好的稳定性。必须确保MR阻尼器同时具有合适的最大输出阻尼力和足够大的动态范围。
更新日期:2020-07-03
down
wechat
bug