当前位置: X-MOL 学术IEEE Trans. Terahertz Sci. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design and Analysis of the Staggered Double Grating Slow Wave Circuit for 263 GHz Sheet Beam TWT
IEEE Transactions on Terahertz Science and Technology ( IF 3.9 ) Pub Date : 2020-07-01 , DOI: 10.1109/tthz.2020.2995826
Yuan Zheng , Diana Gamzina , Logan Himes , Michelle Gonzalez , Neville C. Luhmann

The complete design process of a high-frequency circuit for a 263 GHz staggered double grating, sheet beam traveling wave tube is presented in this article. This device, for use in a pulsed electron paramagnetic resonance spectrometer instrument, requires >30 dB gain and a 20 GHz bandwidth centered at 263 GHz. In addition to the standard Pierce gain analysis and point by point particle in cell (PIC) simulation, a novel fast pulse response analysis technique was utilized to determine the accurate synchronization voltage and test the ``hot” feature of the high-frequency circuit. Since this new method can evaluate the entire bandwidth in a single simulation, it can significantly reduce the computational resources normally required for the conventional PIC analysis while also illustrating the potential instabilities near the band edge. Good agreement between the fast pulse response and PIC simulation results validate the accuracy of this novel method. According to the analysis results and given the manufacturing limits of nano/micro-computer numerical control (CNC) machining, an appropriate SWS, coupler, and sever designs were chosen to complement the simulated design. Finally, a prototype circuit was manufactured and cold tested to verify the design and inspect the machining tolerances.

中文翻译:

263 GHz薄板波束TWT交错双光栅慢波电路的设计与分析

本文介绍了 263 GHz 交错双光栅、片状波束行波管高频电路的完整设计过程。该设备用于脉冲电子顺磁共振光谱仪仪器,需要 >30 dB 增益和以 263 GHz 为中心的 20 GHz 带宽。除了标准的皮尔斯增益分析和逐点粒子单元 (PIC) 模拟之外,还利用了一种新颖的快速脉冲响应分析技术来确定准确的同步电压并测试高频电路的“热”特性。由于这种新方法可以在单个仿真中评估整个带宽,因此可以显着减少传统 PIC 分析通常所需的计算资源,同时还说明了带边缘附近的潜在不稳定性。快速脉冲响应和 PIC 仿真结果之间的良好一致性验证了这种新方法的准确性。根据分析结果并考虑到纳米/微计算机数控 (CNC) 加工的制造限制,选择了合适的 SWS、耦合器和服务器设计来补充模拟设计。最后,制造了一个原型电路并进行冷测试,以验证设计并检查加工公差。
更新日期:2020-07-01
down
wechat
bug