当前位置: X-MOL 学术IEEE Access › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Supervised Fractional-order Embedding Geometrical Multi-view CCA (SFGMCCA) for Multiple Feature Integration
IEEE Access ( IF 3.4 ) Pub Date : 2020-01-01 , DOI: 10.1109/access.2020.3003619
Keisuke Maeda , Yoshiki Ito , Takahiro Ogawa , Miki Haseyama

Techniques for integrating different types of multiple features effectively have been actively studied in recent years. Multiset canonical correlation analysis (MCCA), which maximizes the sum of pairwise correlations of inter-view (i.e., between different features), is one of the powerful methods for integrating different types of multiple features, and various MCCA-based methods have been proposed. This work focuses on a supervised MCCA variant in order to construct a novel effective feature integration framework. In this paper, we newly propose supervised fractional-order embedding geometrical multi-view CCA (SFGMCCA). This method constructs not only the correlation structure but also two types of geometrical structures of intra-view (i.e., within each feature) and inter-view simultaneously, thereby realizing more precise feature integration. This method also supports the integration of small sample and high-dimensional data by using the fractional-order technique. We conducted experiments using four types of image datasets, i.e., MNIST, COIL-20, ETH-80 and CIFAR-10. Furthermore, we also performed an fMRI dataset containing brain signals to verify the robustness. As a result, it was confirmed that accuracy improvements using SFGMCCA were statistically significant at the significance level of 0.05 compared to those using conventional representative MCCA-based methods.

中文翻译:

用于多特征集成的监督分数阶嵌入几何多视图 CCA (SFGMCCA)

近年来,人们积极研究了有效整合不同类型的多特征的技术。Multiset canonical correlation analysis (MCCA) 最大化视点间(即不同特征之间)的成对相关性的总和,是整合不同类型多特征的强大方法之一,并且已经提出了各种基于 MCCA 的方法. 这项工作侧重于受监督的 MCCA 变体,以构建一种新颖的有效特征集成框架。在本文中,我们新提出了监督分数阶嵌入几何多视图 CCA (SFGMCCA)。该方法不仅构建了相关结构,而且同时构建了视图内(即每个特征内)和视图间两种几何结构,从而实现了更精确的特征集成。该方法还支持使用分数阶技术来整合小样本和高维数据。我们使用四种类型的图像数据集进行了实验,即 MNIST、COIL-20、ETH-80 和 CIFAR-10。此外,我们还执行了包含大脑信号的 fMRI 数据集以验证稳健性。结果证实,与使用基于 MCCA 的传统代表性方法相比,使用 SGFMCCA 的精度提高在 0.05 的显着性水平上具有统计学意义。
更新日期:2020-01-01
down
wechat
bug