当前位置: X-MOL 学术IEEE Access › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Scalable Modelling Approach & Robust Hardware-in-the-Loop Testing of an Optimized Interleaved Bidirectional HV DC/DC Converter for Electric Vehicle Drivetrains
IEEE Access ( IF 3.4 ) Pub Date : 2020-01-01 , DOI: 10.1109/access.2020.3004238
Sajib Chakraborty , Mikel Mazuela , Dai-Duong Tran , Javier A. Corea-Araujo , Yuanfeng Lan , Argine Alacano Loiti , Patrice Garmier , Iosu Aizpuru , Omar Hegazy

Automotive Original Equipment Manufacturers (OEMs) require varying levels of functionalities and model details at different phases of the electric vehicles (EV) development process, with a trade-off between accuracy and execution time. This article proposes a scalable modelling approach depending on the multi-objective targets between model functionalities, accuracy and execution time. In this article, four different fidelity levels of modelling approaches are described based on the model functionalities, accuracy and execution time. The highest error observed between the low fidelity (LoFi) map-based model and the high fidelity (HiFi) physics-based model is 5.04%; while, the simulation time of the LoFi model is ~104 times faster than corresponding one of the HiFi model. A detailed comparison of all characteristics between multi-fidelity models is demonstrated in this paper. Furthermore, a dSPACE SCALEXIO Hardware-in-the-Loop (HiL) testbench, equipped with a minimal latency of $18\mu $ sec, is used for real-time (RT) model implementation of the EV’s HV DC/DC converter. The performance of the entire HiL setup is compared with the Model-in-the-Loop (MiL) setup and the highest RMSE is limited to 0.54 among the HiL and MiL results. Moreover, the accuracy (95.7%) of the passive component loss estimation is verified through the Finite Element Method (FEM) software model. Finally, the experimental results of a full-scale 30-kW SiC DC/DC converter prototype are presented to validate the accuracy and correlation between multi-fidelity models. It has been observed that the efficiency deviation between the hardware prototype and multi-fidelity models is less than 1.25% at full load. Furthermore, the SiC Interleaved Bidirectional Converter (IBC) prototype achieves a high efficiency of 98.4% at rated load condition.

中文翻译:

用于电动汽车传动系统的优化交错式双向 HV DC/DC 转换器的可扩展建模方法和稳健的硬件在环测试

汽车原始设备制造商 (OEM) 在电动汽车 (EV) 开发过程的不同阶段需要不同级别的功能和模型细节,需要在准确性和执行时间之间进行权衡。本文根据模型功能、准确性和执行时间之间的多目标目标提出了一种可扩展的建模方法。在本文中,根据模型功能、准确性和执行时间,描述了四种不同保真度级别的建模方法。在基于低保真 (LoFi) 地图的模型和基于高保真 (HiFi) 物理模型之间观察到的最高误差为 5.04%;同时,LoFi 模型的仿真时间比相应的 HiFi 模型快 104 倍。本文展示了多保真模型之间所有特征的详细比较。此外,dSPACE SCALEXIO 硬件在环 (HiL) 测试平台配备了 18 美元/微秒的最小延迟,用于 EV 的 HV DC/DC 转换器的实时 (RT) 模型实现。将整个 HiL 设置的性能与模型在环 (MiL) 设置进行比较,最高 RMSE 在 HiL 和 MiL 结果中限制为 0.54。此外,通过有限元方法 (FEM) 软件模型验证了无源元件损耗估计的准确度 (95.7%)。最后,展示了全尺寸 30 kW SiC DC/DC 转换器原型的实验结果,以验证多保真模型之间的准确性和相关性。据观察,硬件原型和多保真模型之间的效率偏差在满载时小于 1.25%。此外,SiC 交错式双向转换器 (IBC) 原型在额定负载条件下实现了 98.4% 的高效率。
更新日期:2020-01-01
down
wechat
bug