当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A thermally activated and highly miscible dopant for n-type organic thermoelectrics.
Nature Communications ( IF 14.7 ) Pub Date : 2020-07-03 , DOI: 10.1038/s41467-020-17063-1
Chi-Yuan Yang 1 , Yi-Fan Ding 1 , Dazhen Huang 2 , Jue Wang 1 , Ze-Fan Yao 1 , Chun-Xi Huang 1 , Yang Lu 1 , Hio-Ieng Un 1 , Fang-Dong Zhuang 1 , Jin-Hu Dou 1 , Chong-An Di 2 , Daoben Zhu 2 , Jie-Yu Wang 1 , Ting Lei 3 , Jian Pei 1
Affiliation  

N-doping plays an irreplaceable role in controlling the electron concentration of organic semiconductors thus to improve performance of organic semiconductor devices. However, compared with many mature p-doping methods, n-doping of organic semiconductor is still of challenges. In particular, dopant stability/processability, counterion-semiconductor immiscibility and doping induced microstructure non-uniformity have restricted the application of n-doping in high-performance devices. Here, we report a computer-assisted screening approach to rationally design of a triaminomethane-type dopant, which exhibit extremely high stability and strong hydride donating property due to its thermally activated doping mechanism. This triaminomethane derivative shows excellent counterion-semiconductor miscibility (counter cations stay with the polymer side chains), high doping efficiency and uniformity. By using triaminomethane, we realize a record n-type conductivity of up to 21 S cm−1 and power factors as high as 51 μW m−1 K−2 even in films with thicknesses over 10 μm, and we demonstrate the first reported all-polymer thermoelectric generator.



中文翻译:


用于 n 型有机热电材料的热激活且高度混溶的掺杂剂。



N掺杂对于控制有机半导体的电子浓度从而提高有机半导体器件的性能具有不可替代的作用。然而,与许多成熟的p型掺杂方法相比,有机半导体的n型掺杂仍然存在挑战。特别是,掺杂剂稳定性/可加工性、反离子-半导体不混溶性和掺杂引起的微观结构不均匀性限制了n型掺杂在高性能器件中的应用。在这里,我们报告了一种计算机辅助筛选方法来合理设计三氨基甲烷型掺杂剂,该掺杂剂由于其热激活掺杂机制而表现出极高的稳定性和强的氢化物供给特性。这种三氨基甲烷衍生物表现出优异的抗衡离子-半导体混溶性(抗衡阳离子保留在聚合物侧链上)、高掺杂效率和均匀性。通过使用三氨基甲烷,即使在厚度超过 10 μm 的薄膜中,我们也实现了高达 21 S cm -1的创纪录 n 型电导率和高达 51 μW m -1 K -2的功率因数,并且我们证明了第一个报道的所有-聚合物热电发电机。

更新日期:2020-07-03
down
wechat
bug