当前位置: X-MOL 学术Mass Spectrom. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MASS SPECTROMETRY-BASED TECHNIQUES FOR DIRECT QUANTIFICATION OF HIGH IONIZATION ENERGY ELEMENTS IN SOLID MATERIALS—CHALLENGES AND PERSPECTIVES
Mass Spectrometry Reviews ( IF 6.9 ) Pub Date : 2020-07-03 , DOI: 10.1002/mas.21643
Anna Gubal 1 , Victoria Chuchina 1 , Angelina Sorokina 1 , Nikolay Solovyev 1, 2 , Alexander Ganeev 1, 3
Affiliation  

The determination of nonmetals, first of all, the most electronegative ones—nitrogen, oxygen, fluorine, chlorine, and bromine, poses the highest challenge for element analysis. These elements are characterized by high reactivity, volatility, high ionization energy, and the absence of intensive spectral lines in the optical spectral range. Conventional techniques of their quantification include considerable “wet chemistry” stages so the application of these techniques for the solid sample is highly laborious and prone to uncontrollable uncertainties. Additionally, current development in material science and other areas requires the quantification of the elements at lower levels with good sensitivity. Owing to their robustness and flexibility, mass spectrometry techniques provide vast possibilities for the quantification, spatial and isotopic analysis, including the solutions for direct analysis of solids. The current review focuses on the application of major mass spectrometric techniques for the quantification of N, O, F, Cl, and Br in solid samples. The following techniques are mainly considered: thermal ionization mass spectrometry (TIMS), isotope-ratio MS (IRMS), secondary ion MS (SIMS), inductively coupled plasma MS (ICP-MS), and glow discharge MS (GDMS); as the most accessible and widely applied for the purpose. General ionization issues, advantages, limitations, and novel methodological solutions are discussed. © 2020 John Wiley & Sons Ltd.

中文翻译:

用于直接定量固体材料中高电离能元素的基于质谱的技术——挑战和前景

非金属的测定,首先是最具电负性的氮、氧、氟、氯和溴,对元素分析提出了最高的挑战。这些元素的特点是高反应性、挥发性、高电离能,并且在光谱范围内没有密集的谱线。传统的量化技术包括相当多的“湿化学”阶段,因此将这些技术应用于固体样品非常费力,并且容易出现无法控制的不确定性。此外,材料科学和其他领域的当前发展需要以良好的灵敏度对较低水平的元素进行量化。由于其稳健性和灵活性,质谱技术为定量提供了广阔的可能性,空间和同位素分析,包括固体直接分析的解决方案。目前的综述侧重于主要质谱技术在固体样品中 N、O、F、Cl 和 Br 定量的应用。主要考虑以下技术:热电离质谱(TIMS)、同位素比质谱(IRMS)、二次离子质谱(SIMS)、电感耦合等离子体质谱(ICP-MS)和辉光放电质谱(GDMS);作为最容易获得和广泛应用的目的。讨论了一般电离问题、优点、局限性和新的方法学解决方案。© 2020 约翰威利父子公司有限公司。主要考虑以下技术:热电离质谱(TIMS)、同位素比质谱(IRMS)、二次离子质谱(SIMS)、电感耦合等离子体质谱(ICP-MS)和辉光放电质谱(GDMS);作为最容易获得和广泛应用的目的。讨论了一般电离问题、优点、局限性和新的方法学解决方案。© 2020 约翰威利父子公司有限公司。主要考虑以下技术:热电离质谱(TIMS)、同位素比质谱(IRMS)、二次离子质谱(SIMS)、电感耦合等离子体质谱(ICP-MS)和辉光放电质谱(GDMS);作为最容易获得和广泛应用的目的。讨论了一般电离问题、优点、局限性和新的方法学解决方案。© 2020 约翰威利父子公司有限公司。
更新日期:2020-07-03
down
wechat
bug