当前位置: X-MOL 学术Laser Photonics Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Monolayer Conveyor for Stably Trapping and Transporting Sub‐1 nm Particles
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2020-07-02 , DOI: 10.1002/lpor.202000030
Mohammad Danesh 1, 2 , Mehdi Jafary Zadeh 3 , Tianhang Zhang 1, 4 , Xiaohe Zhang 5 , Bing Gu 5 , Jin‐Sheng Lu 6 , Tun Cao 7 , Zhengtong Liu 3 , Andrew T. S. Wee 4, 8 , Min Qiu 9 , Qiaoliang Bao 10 , Stefan Maier 11 , Cheng‐Wei Qiu 1, 4
Affiliation  

Efficient manipulation of nanoparticles and single molecules has always been of great interest and potential in nanotechnology. However, many challenges still remain in effectively functionalizing structures for this purpose. In this work, taking advantage of graphene's Dirac plasmon for its extreme confinement and tunability, a monolayer conveyor along which the position of optical potential well can be dynamically controlled is theoretically proposed. It is shown that by tuning a single voltage, one can manipulate the resonance along the graphene nanoribbon by changing graphene's effective surface plasmons wavelength. A configuration of monolayer graphene conveyor is proposed and Langevin dynamics reveals that a prototypical nanoparticle (1 nm size) can be effectively confined and transported along the device with proper external bias voltage. Hence, this work successfully proposes a promising avenue toward reconfigurable nanomanipulation of sub‐1 nm nanoparticles, and goes beyond the current state‐of‐the‐art of optical micrometer/nanometer‐sized particles manipulation with optical tweezers and nanoplasmonic tweezers.

中文翻译:

单层输送机,用于稳定地捕获和运输亚1 nm以下的颗粒

纳米技术和单分子的有效操纵一直是纳米技术中的巨大兴趣和潜力。然而,为此目的,有效地使结构功能化仍然存在许多挑战。在这项工作中,理论上提出了利用石墨烯的狄拉克等离子体激元(Dirac plasmon)的极端限制和可调谐性,可以动态地控制光势阱位置的单层输送机。结果表明,通过调节单个电压,可以通过改变石墨烯的有效表面等离激元波长来控制沿着石墨烯纳米带的共振。提出了一种单层石墨烯输送机的配置,并且Langevin动力学表明,可以用适当的外部偏置电压有效地限制原型纳米颗粒(尺寸为1 nm)并沿着设备运输。因此,这项工作成功地为亚1 nm纳米颗粒的可重构纳米操纵提出了一条有希望的途径,并且超越了当前用光学镊子和纳米等离子镊子对光学微米/纳米级颗粒进行处理的最新技术水平。
更新日期:2020-07-02
down
wechat
bug