当前位置: X-MOL 学术J. Biomed. Mater. Res. Part A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Carbon quantum dots‐embedded electrospun antimicrobial and fluorescent scaffold for reepithelialization in albino wistar rats
Journal of Biomedical Materials Research Part A ( IF 3.9 ) Pub Date : 2020-07-02 , DOI: 10.1002/jbm.a.37048
Sankaralingam Kanagasubbulakshmi 1 , Krishnasamy Lakshmi 1 , Krishna Kadirvelu 1
Affiliation  

A prosthetic scaffold development using fluorescent nanofiber is reported for an enhanced reepithelialization in wistar albino rats. In this study, a novel approach was followed to construct the biocompatible fluorescent nanofiber that will be helpful to monitor the tissue regeneration process. Here, a multifunctional carbon quantum dots (CQDs)‐embedded electrospun polyacrylonitrile (PAN) nanofiber was fabricated and characterized using standard laboratory techniques. The biodegradation ability was assessed by simulated body fluid thereby analyzing porosity and water absorption capacity of the material. The fluorescent scaffold was tested for cytotoxicity and antimicrobial activity using bacterial and fibroblast cells and fluorescent stability was analyzed by bioimaging of animal and bacterial cells. Tissue regeneration capability of the developed scaffold was evaluated using wistar albino rats. Unlike biomicking scaffolds, the CQDs‐embedded PAN‐based substrate has given dual support by enhancing reepithelialization without growth factors and acted as an antimicrobial agent to provide contamination free tissue regeneration. Scaffolds were examined by using histostaining techniques and scanning electron microscopy to observe the reepithelialization in the regenerated tissues. The novel approach for developing infection free soft tissue regeneration was found to be phenomenal in scaffold development.

中文翻译:

碳量子点嵌入电纺抗菌和荧光支架用于白化 wistar 大鼠再上皮化

据报道,使用荧光纳米纤维开发的假体支架可增强 wistar 白化病大鼠的再上皮化。在这项研究中,采用了一种新方法来构建生物相容性荧光纳米纤维,这将有助于监测组织再生过程。在这里,使用标准实验室技术制造并表征了多功能碳量子点 (CQD) 嵌入的电纺聚丙烯腈 (PAN) 纳米纤维。通过模拟体液评估生物降解能力,从而分析材料的孔隙率和吸水能力。使用细菌和成纤维细胞测试荧光支架的细胞毒性和抗菌活性,并通过动物和细菌细胞的生物成像分析荧光稳定性。使用 wistar 白化大鼠评估了开发的支架的组织再生能力。与仿生支架不同,CQDs 嵌入的 PAN 基基材通过在没有生长因子的情况下增强上皮再形成并作为抗菌剂提供无污染的组织再生,从而提供双重支持。通过使用组织染色技术和扫描电子显微镜检查支架以观察再生组织中的再上皮化。发现开发无感染软组织再生的新方法在支架开发中非常显着。嵌入 CQDs 的 PAN 基底物通过在没有生长因子的情况下增强上皮再形成来提供双重支持,并作为抗菌剂提供无污染的组织再生。通过使用组织染色技术和扫描电子显微镜检查支架以观察再生组织中的再上皮化。发现开发无感染软组织再生的新方法在支架开发中非常显着。嵌入 CQDs 的 PAN 基底物通过在没有生长因子的情况下增强上皮再形成来提供双重支持,并作为抗菌剂提供无污染的组织再生。通过使用组织染色技术和扫描电子显微镜检查支架以观察再生组织中的再上皮化。发现开发无感染软组织再生的新方法在支架开发中非常显着。
更新日期:2020-07-02
down
wechat
bug