当前位置: X-MOL 学术Thermochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal decomposition behavior of CL-20 co-crystals
Thermochimica Acta ( IF 3.1 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.tca.2020.178703
V.P. Sinditskii , N.V. Yudin , S.I. Fedorchenko , V.Yu. Egorshev , N.A. Kostin , L.V. Gezalyan , Jiang-Guo Zhang

Abstract The thermal stability of bimolecular crystals 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazawurtzitane (CL-20) with 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), 1,4-dinitropipyrazine (DNPP), benzotrifuroxan (BTF), and 1-methyl-3,4,5-trinitro-1H-pyrazole (MTNP) has been studied using isothermal and non-isothermal kinetics methods. The studied co-crystals can be divided into two groups: in the case of co-crystallization of two nitramines 2CL-20/HMX and CL-20/DNPP, the molecular structure of the co-crystal does not undergo significant changes up to the decomposition temperature and the stability of the CL-20 does not change. In the case of co-crystallization of CL-20 with compounds of another class 2CL-20/MTNP and 2CL-20/BTF, the intermolecular interaction is weakened. Being more volatile and/or easily melted than CL-20, the second components (BTF and MTNP) of the co-crystals evaporate/melt when heated, leaving the CL-20 in an amorphous form, which leads to a decrease in its stability. Based on the reaction kinetic model, thermal hazard indicators such as adiabatic time to maximum rate (TMRad), and self-accelerating decomposition temperature (SADT) have been predicted to provide necessary safety information concerning the usage and storage of studied co-crystal. The combustion studies of bimolecular crystals showed that the burning CL-20/HMX and CL-20/DNPP co-crystals obey the mechanism with the leading reaction in the condensed phase. The burning rate of CL-20/BTF co-crystal is determined by reactions in the flame.

中文翻译:

CL-20共晶的热分解行为

摘要 双分子晶体 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazawurtzitane (CL-20) 的热稳定性与 1,3,5,7-tetranitro- 1,3,5,7-四唑烷 (HMX)、1,4-二硝基哌嗪 (DNPP)、苯并三呋喃 (BTF) 和 1-甲基-3,4,5-三硝基-1H-吡唑 (MTNP) 已使用等温和非等温动力学方法。所研究的共晶可分为两组:在两种硝胺 2CL-20/HMX 和 CL-20/DNPP 共结晶的情况下,共晶的分子结构在分解温度和 CL-20 的稳定性没有变化。在 CL-20 与另一类 2CL-20/MTNP 和 2CL-20/BTF 化合物共结晶的情况下,分子间相互作用减弱。比 CL-20 更易挥发和/或更容易熔化,共晶的第二组分(BTF 和 MTNP)在加热时蒸发/熔化,使 CL-20 处于无定形形式,这导致其稳定性降低。基于反应动力学模型,预测了最大速率绝热时间(TMRad)和自加速分解温度(SADT)等热危害指标,为研究的共晶的使用和储存提供必要的安全信息。双分子晶体的燃烧研究表明,燃烧的 CL-20/HMX 和 CL-20/DNPP 共晶遵循凝聚相中先导反应的机理。CL-20/BTF 共晶的燃烧速率由火焰中的反应决定。基于反应动力学模型,预测了最大速率绝热时间(TMRad)和自加速分解温度(SADT)等热危害指标,为研究的共晶的使用和储存提供必要的安全信息。双分子晶体的燃烧研究表明,燃烧的 CL-20/HMX 和 CL-20/DNPP 共晶遵循凝聚相中先导反应的机理。CL-20/BTF 共晶的燃烧速率由火焰中的反应决定。基于反应动力学模型,预测了最大速率绝热时间(TMRad)和自加速分解温度(SADT)等热危害指标,为研究的共晶的使用和储存提供必要的安全信息。双分子晶体的燃烧研究表明,燃烧的 CL-20/HMX 和 CL-20/DNPP 共晶遵循凝聚相中先导反应的机理。CL-20/BTF 共晶的燃烧速率由火焰中的反应决定。双分子晶体的燃烧研究表明,燃烧的 CL-20/HMX 和 CL-20/DNPP 共晶遵循凝聚相中先导反应的机理。CL-20/BTF 共晶的燃烧速率由火焰中的反应决定。双分子晶体的燃烧研究表明,燃烧的 CL-20/HMX 和 CL-20/DNPP 共晶遵循凝聚相中先导反应的机理。CL-20/BTF 共晶的燃烧速率由火焰中的反应决定。
更新日期:2020-09-01
down
wechat
bug