当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Grafting polymer from oxygen-vacancy-rich nanoparticles to enable protective layers for stable lithium metal anode
Nano Energy ( IF 16.8 ) Pub Date : 2020-07-03 , DOI: 10.1016/j.nanoen.2020.105046
Sipei Li , Tong Liu , Jiajun Yan , Jacob Flum , Han Wang , Francesca Lorandi , Zongyu Wang , Liye Fu , Leiming Hu , Yuqi Zhao , Rui Yuan , Mingkang Sun , Jay F. Whitacre , Krzysztof Matyjaszewski

Fabricating an artificial solid electrolyte interface (SEI) is a promising approach to improve cycling stability of lithium metal batteries. In this work, a new category of artificial SEI based on oxygen vacancy-rich hybrid nanoparticles was prepared by covalently grafting polymers from yttria–stabilized zirconia (YSZ) nanoparticles via surface-initiated atom transfer radical polymerization (SI-ATRP). The hairy nanoparticles had high dispersibility in dimethylsulfoxide, and were solution casted into uniform thin films with high inorganic content, high ionic conductivity (>1 × 10−4 S/cm at r.t.), and good mechanical properties (Young's modulus 7.56 GPa). No dendrite formation was observed by in-situ optical microscopy on a lithium metal protected by such artificial SEI. Protected anodes were stably cycled at 3 mA/cm2 and 3 mA h/cm2 with low overpotentials (20 mV) for >2500 h. LiNi0.8Co0.15Al0.05O2 (NCA)|Li full cells with protected Li anode showed much higher specific discharge capacity at various rates and improved capacity retention compared to unprotected Li anode.



中文翻译:

从富氧空位的纳米粒子接枝聚合物以形成保护层,以形成稳定的锂金属阳极

制造人造固体电解质界面(SEI)是提高锂金属电池循环稳定性的一种有前途的方法。在这项工作中,通过表面引发的原子转移自由基聚合(SI-ATRP)将氧化钇稳定的氧化锆(YSZ)纳米粒子中的聚合物共价接枝,从而制备了一种基于富氧空位杂化纳米粒子的新型人造SEI。毛状纳米颗粒在二甲亚砜中具有高分散性,并被溶液流延成具有高无机含量,高离子电导率( 室温下> 1×10 -4 S / cm)和良好的机械性能(杨氏模量7.56 GPa)的均匀薄膜。原位未观察到枝晶形成用这种人工SEI保护的锂金属上的光学显微镜。将受保护的阳极以3 mA / cm 2和3 mA h / cm 2的低过电势(20 mV)稳定循环> 2500 h。与未保护的Li阳极相比,具有受保护的Li阳极的LiNi 0.8 Co 0.15 Al 0.05 O 2(NCA)| Li满电池在各种速率下均显示出更高的比放电容量,并改善了容量保持率。

更新日期:2020-07-10
down
wechat
bug