当前位置: X-MOL 学术J. Loss Prev. Process. Ind. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Kinetic mechanism and effects of molecular structure on thermal hazards of azo compounds
Journal of Loss Prevention in the Process Industries ( IF 3.6 ) Pub Date : 2020-07-03 , DOI: 10.1016/j.jlp.2020.104207
Song Guo , Min Jia , Xiusheng Qi , Wei Wan

In this paper, the kinetic mechanism of AIBN, AMBN, and ABVN was proposed, and the effect of molecular structure on their thermal hazards based on the kinetic mechanism was investigated. Calculated by non-isothermal DSC datum, the kinetic mechanism of AIBN, AMBN, and ABVN is revealed by the linear relationship between the integrated form of mechanical function and reaction time. The results indicate that the thermal decomposition process is controlled by the Johnson-Mehl-Avrami equation. Based on the determination of kinetic mechanism function, the reaction rate constants at various heating rates are directly calculated, and the intercept of the best fitting straight line of reaction rate constants with heating rate is approximately equal to the reaction rate constant under isothermal conditions. Besides, theoretical values obtained by multiplying kinetic mechanism function by reaction rate are well consistent with the experimental values, suggesting that the kinetic mechanism obtained is credible. Bond Dissociation Energies (BDE) calculated by quantum chemical equations are employed to evaluate the thermodynamics stability of AIBN, AMBN, and ABVN. Depending on similar molecular structures, the influence of differentiated group structure on the thermodynamic stability represented by BDE and heat release and the kinetic stability characterized by reaction rate constant were revealed. Finally, the results demonstrate that the thermal hazard increases as the volume of substituent group and molecular weight.



中文翻译:

偶氮化合物热危害的动力学机理及分子结构的影响

本文提出了AIBN,AMBN和ABVN的动力学机理,并基于动力学机理研究了分子结构对其热危害的影响。通过非等温DSC数据计算,AIBN,AMBN和ABVN的动力学机理是通过机械功能积分形式与反应时间之间的线性关系揭示的。结果表明,热分解过程受Johnson-Mehl-Avrami方程控制。基于动力学机理函数的确定,直接计算出各种加热速率下的反应速率常数,反应速率常数与加热速率的最佳拟合直线的截距近似等于等温条件下的反应速率常数。除了,通过将动力学机理函数乘以反应速率获得的理论值与实验值非常吻合,表明所获得的动力学机理是可信的。通过量子化学方程式计算的键解离能(BDE)用于评估AIBN,AMBN和ABVN的热力学稳定性。根据相似的分子结构,揭示了差异基团结构对以BDE为代表的热力学稳定性和放热的影响以及以反应速率常数为特征的动力学稳定性。最后,结果表明,热危害随着取代基团的体积和分子量的增加而增加。这表明所获得的动力学机理是可信的。通过量子化学方程式计算的键离解能(BDE)用于评估AIBN,AMBN和ABVN的热力学稳定性。根据相似的分子结构,揭示了差异基团结构对以BDE为代表的热力学稳定性和放热的影响以及以反应速率常数为特征的动力学稳定性。最后,结果表明,热危害随着取代基的体积和分子量的增加而增加。这表明所获得的动力学机理是可信的。通过量子化学方程式计算的键离解能(BDE)用于评估AIBN,AMBN和ABVN的热力学稳定性。根据相似的分子结构,揭示了差异基团结构对以BDE为代表的热力学稳定性和放热的影响以及以反应速率常数为特征的动力学稳定性。最后,结果表明,热危害随着取代基的体积和分子量的增加而增加。揭示了不同的基团结构对以BDE为代表的热力学稳定性和放热的影响以及以反应速率常数为特征的动力学稳定性。最后,结果表明,热危害随着取代基团的体积和分子量的增加而增加。揭示了不同的基团结构对以BDE为代表的热力学稳定性和放热的影响以及以反应速率常数为特征的动力学稳定性。最后,结果表明,热危害随着取代基的体积和分子量的增加而增加。

更新日期:2020-07-03
down
wechat
bug