当前位置: X-MOL 学术Def. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental research on the instability propagation characteristics of liquid kerosene rotating detonation wave
Defence Technology ( IF 5.0 ) Pub Date : 2020-07-03 , DOI: 10.1016/j.dt.2020.06.028
Quan Zheng , Hao-long Meng , Chun-sheng Weng , Yu-wen Wu , Wen-kang Feng , Ming-liang Wu

In order to study the instability propagation characteristics of the liquid kerosene rotating detonation wave (RDW), a series of experimental tests were carried out on the rotating detonation combustor (RDC) with air-heater. The fuel and oxidizer are room-temperature liquid kerosene and preheated oxygen-enriched air, respectively. The experimental tests keep the equivalence ratio of 0.81 and the oxygen mass fraction of 35% unchanged, and the total mass flow rate is maintained at about 1000 g/s, changing the total temperature of the oxygen-enriched air from 620 K to 860 K. Three different types of instability were observed in the experiments: temporal and spatial instability, mode transition and re-initiation. The interaction between RDW and supply plenum may be the main reason for the fluctuations of detonation wave velocity and pressure peaks with time. Moreover, the inconsistent mixing of fuel and oxidizer at different circumferential positions is related to RDW oscillate spatially. The phenomenon of single-double-single wave transition is analyzed. During the transition, the initial RDW weakens until disappears, and the compression wave strengthens until it becomes a new RDW and propagates steadily. The increased deflagration between the detonation products and the fresh gas layer caused by excessively high temperature is one of the reasons for the RDC quenching and re-initiation.



中文翻译:

液体煤油旋转爆轰波不稳定性传播特性的实验研究

为了研究液态煤油旋转爆轰波(RDW)的不稳定性传播特性,对带有空气加热器的旋转爆轰燃烧器(RDC)进行了一系列实验测试。燃料和氧化剂分别是室温液态煤油和预热的富氧空气。实验测试保持当量比为0.81且氧气质量分数为35%不变,总质量流率保持在约1000 g / s,将富氧空气的总温度从620 K更改为860 K在实验中观察到三种不同类型的不稳定性:时间和空间不稳定性,模式转变和重新初始化。RDW与供气室之间的相互作用可能是导致爆震波速度和压力峰值随时间波动的主要原因。而且,燃料和氧化剂在不同圆周位置处的不一致混合与RDW在空间上振荡有关。分析了单双单波跃迁现象。在过渡过程中,初始RDW减弱直至消失,压缩波增强直至成为新的RDW并稳定传播。过热引起的爆炸产物与新鲜气体层之间的爆燃增加是RDC淬火和重新初始化的原因之一。分析了单双单波跃迁现象。在过渡过程中,初始RDW减弱直至消失,压缩波增强直至成为新的RDW并稳定传播。过热引起的爆炸产物与新鲜气体层之间的爆燃增加是RDC淬火和重新初始化的原因之一。分析了单双单波跃迁现象。在过渡过程中,初始RDW减弱直至消失,压缩波增强直至成为新的RDW并稳定传播。过热引起的爆炸产物与新鲜气体层之间的爆燃增加是RDC淬火和重新初始化的原因之一。

更新日期:2020-07-03
down
wechat
bug