当前位置: X-MOL 学术Appl. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Coupled thermo-mechanical analysis of stresses generated in impact ice during in-flight de-icing
Applied Thermal Engineering ( IF 6.4 ) Pub Date : 2020-07-03 , DOI: 10.1016/j.applthermaleng.2020.115681
Liang Ding , Shinan Chang , Xian Yi , Mengjie Song

Before the phase change of ice on the aircraft surface occurs during an electrothermal de-icing process, the stresses developed in impact ice may have certain influence on the shedding of ice. To effectively improve the control accuracy of inflight de-icing, a numerical study on the thermo-mechanical coupling effect caused by aerodynamic force and electric heating is carried out. Based on the fundamental rules of elastic mechanics and heat transfer, this multi-physical process involving fluid-structure interaction and thermal-structure coupling is numerically investigated, with the stress distribution developed across the entire structure predicted. To further evaluate the contribution to ice detachment, the stresses generated under typical conditions are quantitatively compared with the fracture strength of ice. Results show that the effect of the heat flux is much more significant than that of the aerodynamic force on ice failure. Under the action of electric heating, the maximum shear stress is determined at 2.84 MPa, which is 5.6 times the shear strength of ice (0.51 MPa) and will cause ice detachment along the ice-airfoil interface. Besides, the peak principal stress reaches 5.94 MPa after 5 s of heating time and has exceeded the compressive strength of ice (5 MPa), developing local fracture inside the ice. The combined effect of these two aspects weakens the overall adhesion and may eventually lead to ice shedding. Contributions of this study can effectively guide the optimization of aircraft thermo-mechanical de-icing systems.



中文翻译:

飞行中除冰过程中撞击冰中产生的应力的热机械耦合分析

在电热除冰过程中,飞机表面冰的相变发生之前,冲击冰中产生的应力可能会对冰的脱落产生一定的影响。为了有效地提高机上除冰的控制精度,对空气动力和电加热引起的热力耦合效应进行了数值研究。根据弹性力学和热传递的基本规则,对涉及流体-结构相互作用和热-结构耦合的多物理过程进行了数值研究,并预测了整个结构上的应力分布。为了进一步评估对冰分离的影响,将典型条件下产生的应力与冰的断裂强度进行定量比较。结果表明,热流的影响比空气动力对冰破坏的影响要大得多。在电加热的作用下,最大剪切应力确定为2.84 MPa,是冰的剪切强度(0.51 MPa)的5.6倍,并且将导致冰在冰翼面的分离。此外,加热5 s后,峰值主应力达到5.94 MPa,超过了冰的抗压强度(5 MPa),在冰内部产生局部破裂。这两个方面的综合作用会削弱整体附着力,并最终导致冰块脱落。这项研究的贡献可以有效地指导飞机热机械除冰系统的优化。最大剪切应力确定为2.84 MPa,这是冰的剪切强度(0.51 MPa)的5.6倍,并且会导致冰在冰翼面的分离。此外,加热5 s后,峰值主应力达到5.94 MPa,超过了冰的抗压强度(5 MPa),在冰内部产生局部破裂。这两个方面的综合作用会削弱整体附着力,并最终导致冰块脱落。这项研究的贡献可以有效地指导飞机热机械除冰系统的优化。最大剪切应力确定为2.84 MPa,这是冰的剪切强度(0.51 MPa)的5.6倍,并且会导致冰在冰翼面的分离。此外,加热5 s后,峰值主应力达到5.94 MPa,超过了冰的抗压强度(5 MPa),在冰内部产生局部破裂。这两个方面的综合作用会削弱整体附着力,并最终导致冰块脱落。这项研究的贡献可以有效地指导飞机热机械除冰系统的优化。加热5 s后达到94 MPa,并且已超过冰的抗压强度(5 MPa),从而在冰内部产生局部破裂。这两个方面的综合作用会削弱整体附着力,并最终导致冰块脱落。这项研究的贡献可以有效地指导飞机热机械除冰系统的优化。加热5 s后达到94 MPa,并且已超过冰的抗压强度(5 MPa),从而在冰内部产生局部破裂。这两个方面的综合作用会削弱整体附着力,并最终导致冰块脱落。这项研究的贡献可以有效地指导飞机热机械除冰系统的优化。

更新日期:2020-08-29
down
wechat
bug