当前位置: X-MOL 学术Space Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lunar Seismology: A Data and Instrumentation Review
Space Science Reviews ( IF 9.1 ) Pub Date : 2020-07-03 , DOI: 10.1007/s11214-020-00709-3
Ceri Nunn , Raphael F. Garcia , Yosio Nakamura , Angela G. Marusiak , Taichi Kawamura , Daoyuan Sun , Ludovic Margerin , Renee Weber , Mélanie Drilleau , Mark A. Wieczorek , Amir Khan , Attilio Rivoldini , Philippe Lognonné , Peimin Zhu

Several seismic experiments were deployed on the Moon by the astronauts during the Apollo missions. The experiments began in 1969 with Apollo 11, and continued with Apollo 12, 14, 15, 16 and 17. Instruments at Apollo 12, 14, 15, 16 and 17 remained operational until the final transmission in 1977. These remarkable experiments provide a valuable resource. Now is a good time to review this resource, since the InSight mission is returning seismic data from Mars, and seismic missions to the Moon and Europa are in development from different space agencies. We present an overview of the seismic data available from four sets of experiments on the Moon: the Passive Seismic Experiments, the Active Seismic Experiments, the Lunar Seismic Profiling Experiment and the Lunar Surface Gravimeter. For each of these, we outline the instrumentation and the data availability. We show examples of the different types of moonquakes, which are: artificial impacts, meteoroid strikes, shallow quakes (less than 200 km depth) and deep quakes (around 900 km depth). Deep quakes often occur in tight spatial clusters, and their seismic signals can therefore be stacked to improve the signal-to-noise ratio. We provide stacked deep moonquake signals from three independent sources in miniSEED format. We provide an arrival-time catalog compiled from six independent sources, as well as estimates of event time and location where available. We show statistics on the consistency between arrival-time picks from different operators. Moonquakes have a characteristic shape, where the energy rises slowly to a maximum, followed by an even longer decay time. We include a table of the times of arrival of the maximum energy t max $t_{\max}$ and the coda quality factor Q c $Q_{c}$ . Finally, we outline minimum requirements for future lunar missions to the Moon. These requirements are particularly relevant to future missions which intend to share data with other agencies, and set out a path for an International Lunar Network, which can provide simultaneous multi-station observations on the Moon.

中文翻译:

月球地震学:数据和仪器回顾

在阿波罗任务期间,宇航员在月球上进行了几次地震实验。实验从 1969 年的阿波罗 11 号开始,并在阿波罗 12、14、15、16 和 17 号上继续进行。阿波罗 12、14、15、16 和 17 号的仪器一直运行到 1977 年的最后一次传输。这些非凡的实验提供了宝贵的经验。资源。现在是回顾此资源的好时机,因为洞察号任务正在返回来自火星的地震数据,而不同的航天机构正在开发前往月球和欧罗巴的地震任务。我们概述了从月球上的四组实验中获得的地震数据:被动地震实验、主动地震实验、月球地震剖面实验和月球表面重力仪。对于其中的每一个,我们概述了仪器和数据可用性。我们展示了不同类型的月震示例,包括:人工撞击、流星体撞击、浅地震(深度小于 200 公里)和深地震(深度约 900 公里)。深震通常发生在紧密的空间集群中,因此可以叠加它们的地震信号以提高信噪比。我们以 miniSEED 格式提供来自三个独立来源的堆叠深度月震信号。我们提供从六个独立来源编制的到达时间目录,以及可用的事件时间和地点估计。我们显示了来自不同运营商的到达时间选择之间一致性的统计数据。月震具有一个特征形状,即能量缓慢上升到最大值,然后衰减时间更长。我们包括最大能量 t max $t_{\max}$ 和尾声品质因数 Q c $Q_{c}$ 的到达时间表。最后,我们概述了未来登月任务的最低要求。这些要求与打算与其他机构共享数据的未来任务特别相关,并为国际月球网络开辟了道路,该网络可以在月球上同时进行多站观测。
更新日期:2020-07-03
down
wechat
bug