当前位置: X-MOL 学术Bull. Malays. Math. Sci. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Discrete–Continuous Jacobi–Sobolev Spaces and Fourier Series
Bulletin of the Malaysian Mathematical Sciences Society ( IF 1.0 ) Pub Date : 2020-07-02 , DOI: 10.1007/s40840-020-00950-7
Abel Díaz-González , Francisco Marcellán , Héctor Pijeira-Cabrera , Wilfredo Urbina

Let \(p\ge 1, \ell \in \mathbb {N}, \alpha ,\beta >-1\) and \(\varpi =(\omega _0,\omega _1, \ldots , \omega _{\ell -1})\in \mathbb {R}^{\ell }\). Given a suitable function f, we define the discrete–continuous Jacobi–Sobolev norm of f as:

$$\begin{aligned} \Vert f \Vert _{{\scriptscriptstyle \mathsf {s}},{\scriptscriptstyle p}}:= \left( \sum _{k=0}^{\ell -1} \left| f^{(k)}(\omega _{k})\right| ^{p} + \int _{-1}^{1} \left| f^{(\ell )}(x)\right| ^{p} \mathrm{d}\mu ^{\alpha ,\beta }(x)\right) ^{\frac{1}{p}}, \end{aligned}$$

where \( \mathrm{d}\mu ^{\alpha ,\beta }(x)=(1-x)^{\alpha } (1+x)^{\beta }\mathrm{d}x\). Obviously, \(\Vert \cdot \Vert _{{\scriptscriptstyle \mathsf {s}},{\scriptscriptstyle 2}}= \sqrt{\langle \cdot ,\cdot \rangle _{{\scriptscriptstyle \mathsf {s}}}}\), where \(\langle \cdot ,\cdot \rangle _{{\scriptscriptstyle \mathsf {s}}}\) is the inner product

$$\begin{aligned} \langle f,g \rangle _{{\scriptscriptstyle \mathsf {s}}}:= \sum _{k=0}^{\ell -1} f^{(k)}(\omega _{k}) \, g^{(k)}(\omega _{k}) + \int _{-1}^{1} f^{(\ell )}(x) \,g^{(\ell )}(x) \mathrm{d}\mu ^{\alpha ,\beta }(x). \end{aligned}$$

In this paper, we summarize the main advances on the convergence of the Fourier–Sobolev series, in norms of type \(L^p\), in the continuous and discrete cases, respectively. Additionally, we study the completeness of the Sobolev space of functions associated with the norm \(\Vert \cdot \Vert _{{\scriptscriptstyle \mathsf {s}},{\scriptscriptstyle p}}\) and the denseness of the polynomials. Furthermore, we obtain the conditions for the convergence in \(\Vert \cdot \Vert _{{\scriptscriptstyle \mathsf {s}},{\scriptscriptstyle p}}\) norm of the partial sum of the Fourier–Sobolev series of orthogonal polynomials with respect to \(\langle \cdot ,\cdot \rangle _{{\scriptscriptstyle \mathsf {s}}}\).



中文翻译:

离散–连续Jacobi–Sobolev空间和傅立叶级数

\(p \ ge 1,\ ell \ in \ mathbb {N},\ alpha,\ beta> -1 \)\(\ varpi =(\ omega _0,\ omega _1,\ ldots,\ omega _ { \ ell -1})\ in \ mathbb {R} ^ {\ ell} \)中。给定合适的函数˚F,我们定义的离散连续雅克比的Sobolev范数˚F为:

$$ \ begin {aligned} \ Vert f \ Vert _ {{\ scriptscriptstyle \ mathsf {s}},{\ scriptstyle p}}:= \ left(\ sum _ {k = 0} ^ {\ ell -1} \ left | f ^ {((k)}(\ omega _ {k})\ right | ^ {p} + \ int _ {-1} ^ {1} \ left | f ^ {(\ ell)}(x )\ right | ^ {p} \ mathrm {d} \ mu ^ {\ alpha,\ beta}(x)\ right)^ {\ frac {1} {p}},\ end {aligned} $$

其中\(\ mathrm {d} \ mu ^ {\ alpha,\ beta}(x)=(1-x)^ {\ alpha}(1 + x)^ {\ beta} \ mathrm {d} x \)。显然,\(\ Vert \ cdot \ Vert _ {{\ scriptscriptstyle \ mathsf {s}},{\ scriptscriptstyle 2}} = \ sqrt {\ langle \ cdot,\ cdot \ rangle _ {{\ scriptscriptstyle \ mathsf {s }}}} \),其中\(\ langle \ cdot,\ cdot \ rangle _ {{\ scriptscriptstyle \ mathsf {s}}} \)是内积

$$ \ begin {aligned} \ langle f,g \ rangle _ {{\ scriptscriptstyle \ mathsf {s}}}:= \ sum _ {k = 0} ^ {\ ell -1} f ^ {(k)} (\ omega _ {k})\,g ^ {(k)}(\ omega _ {k})+ \ int _ {-1} ^ {1} f ^ {(\ ell}}(x)\, g ^ {(\ ell)}(x)\ mathrm {d} \ mu ^ {\ alpha,\ beta}(x)。\ end {aligned} $$

在本文中,我们总结了分别在连续和离散情况下在((L ^ p \)类型的范数下)的Fourier–Sobolev级数收敛的主要进展。此外,我们研究了与范数\(\ Vert \ cdot \ Vert _ {{\ scriptscriptstyle \ mathsf {s}},{\ scriptscriptstyle p}} \)相关的函数的Sobolev空间的完备性和多项式的密度。此外,我们获得了傅立叶-Sobolev级数的部分和的\(\ Vert \ cdot \ Vert _ {{\ scriptscriptstyle \ mathsf {s}},{\ scriptscriptstyle p}} \)范式中的收敛条件。关于\(\ langle \ cdot,\ cdot \ rangle _ {{\\ scriptscriptstyle \ mathsf {s}}} \)的正交多项式。

更新日期:2020-07-03
down
wechat
bug