当前位置: X-MOL 学术Proc. Natl. Acad. Sci. U.S.A. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bioinspired nervous signal transmission system based on two-dimensional laminar nanofluidics: From electronics to ionics.
Proceedings of the National Academy of Sciences of the United States of America ( IF 9.4 ) Pub Date : 2020-07-21 , DOI: 10.1073/pnas.2005937117
Yunfei Teng 1, 2 , Pei Liu 1, 2 , Lin Fu 1, 2 , Xiang-Yu Kong 3 , Lei Jiang 1, 2 , Liping Wen 2, 3
Affiliation  

Mammalian nervous systems, as natural ionic circuitries, stand out in environmental perception and sophisticated information transmission, relying on protein ionic channels and additional necessary structures. Prosperously emerged ionic regulated biomimetic nanochannels exhibit great potentialities in various application scenarios, especially signal transduction. Most reported direct current systems possess deficiencies in informational density and variability, which are superiorities of alternating current (AC) systems and necessities in bioinspired nervous signal transmission. Here, inspired by myelinated saltatory conduction, alternating electrostatic potential controlled nanofluidics are constructed with a noncontact application pattern and MXene nanosheets. Under time-variant external stimuli, ions confined in the interlaminar space obtain the capability of carriers for the AC ionic circuit. The transmitted information is accessible from typical sine to a frequency-modulated binary signal. This work demonstrates the potentiality of the bioinspired nervous signal transmission between electronics and ionic nanofluidics, which might push one step forward to the avenue of AC ionics.



中文翻译:

基于二维层流纳米流体的生物启发性神经信号传输系统:从电子到离子学。

哺乳动物的神经系统,作为天然的离子回路,在环境感知和复杂的信息传递中脱颖而出,它们依靠蛋白质离子通道和其他必要的结构。蓬勃兴起的离子调节仿生纳米通道在各种应用场合,尤其是信号转导中显示出巨大的潜力。大多数报告的直流系统在信息密度和可变性方面存在缺陷,这是交流(AC)系统的优势,也是生物启发神经信号传输的必要条件。在此,受髓鞘盐化传导的启发,以非接触式应用模式和MXene纳米片构造了交替的静电势控制的纳米流体。在时变的外部刺激下,限制在层间空间中的离子获得了载流子对交流离子电路的能力。从典型的正弦信号到调频二进制信号都可以访问所传输的信息。这项工作证明了电子和离子纳米流体之间的生物启发性神经信号传输的潜力,这可能会朝着AC离子途径迈进一步。

更新日期:2020-07-22
down
wechat
bug