当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Unique Double-Layered Carbon Nanobowl-Confined Lithium Borohydride for Highly Reversible Hydrogen Storage.
Small ( IF 13.0 ) Pub Date : 2020-07-01 , DOI: 10.1002/smll.202001963
Ruyan Wu 1 , Xin Zhang 1 , Yongfeng Liu 1 , Lingchao Zhang 1 , Jianjiang Hu 2 , Mingxia Gao 1 , Hongge Pan 1
Affiliation  

Poor reversibility and high desorption temperature restricts the practical use of lithium borohydride (LiBH4) as an advanced hydrogen store. Herein, a LiBH4 composite confined in unique double‐layered carbon nanobowls prepared by a facile melt infiltration process is demonstrated, thanks to powerful capillary effect under 100 bar of H2 pressure. The gradual formation of double‐layered carbon nanobowls is witnessed by transmission electron microscopy (TEM) observation. Benefiting from the nanoconfinement effect and catalytic function of carbon, this composite releases hydrogen from 225 °C and peaks at 353 °C, with a hydrogen release amount up to 10.9 wt%. The peak temperature of dehydriding is lowered by 112 °C compared with bulk LiBH4. More importantly, the composite readily desorbs and absorbs ≈8.5 wt% of H2 at 300 °C and 100 bar H2, showing a significant reversibility of hydrogen storage. Such a high reversible capacity has not ever been observed under the identical conditions. The usable volumetric energy density reaches as high as 82.4 g L−1 with considerable dehydriding kinetics. The findings provide insights in the design and development of nanosized complex hydrides for on‐board applications.

中文翻译:

独特的双层碳纳米碗限制氢硼化锂,可高度储氢。

可逆性差和解吸温度高限制了硼氢化锂(LiBH 4)作为高级储氢剂的实际使用。在此,通过在100 bar H 2压力下产生强大的毛细管效应,展示了一种LiBH 4复合材料,该复合材料被限制在通过便捷的熔体渗透工艺制备的独特的双层碳纳米碗中。透射电子显微镜(TEM)观察证明了双层碳纳米碗的逐渐形成。受益于碳的纳米限制作用和催化功能,该复合材料从225°C释放出氢,并在353°C达到峰值,氢释放量高达10.9 wt%。与块状LiBH 4相比,脱水的峰值温度降低了112°C。更重要的是,该复合容易脱附,并且吸收≈8.5重量的H%2在300℃和100巴ħ 2,示出了储氢的显著可逆性。在相同条件下从未观察到如此高的可逆容量。可用的体积能量密度高达82.4 g L -1,具有相当大的脱水动力学。这些发现为车载应用纳米复合氢化物的设计和开发提供了见识。
更新日期:2020-08-14
down
wechat
bug