当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Temperature-Dependent Chemical and Physical Microstructure of Li Metal Anodes Revealed through Synchrotron-Based Imaging Techniques.
Advanced Materials ( IF 27.4 ) Pub Date : 2020-07-01 , DOI: 10.1002/adma.202002550
Keegan R Adair 1 , Mohammad Norouzi Banis 1 , Yang Zhao 1 , Toby Bond 2 , Ruying Li 1 , Xueliang Sun 1
Affiliation  

The Li metal anode has been long sought‐after for application in Li metal batteries due to its high specific capacity (3860 mAh g−1) and low electrochemical potential (−3.04 V vs the standard hydrogen electrode). Nevertheless, the behavior of Li metal in different environments has been scarcely reported. Herein, the temperature‐dependent behavior of Li metal anodes in carbonate electrolyte from the micro‐ to macroscales are explored with advanced synchrotron‐based characterization techniques such as X‐ray computed tomography and energy‐dependent X‐ray fluorescence mapping. The importance of testing methodology is exemplified, and the electrochemical behavior and failure modes of Li anodes cycled at different temperatures are discussed. Moreover, the origin of cycling performance at different temperatures is identified through analysis of Coulombic efficiencies, surface morphology, and the chemical composition of the solid electrolyte interphase in quasi‐3D space with energy‐dependent X‐ray fluorescence mappings coupled with micro‐X‐ray absorption near edge structure. This work provides new characterization methods for Li metal anodes and serves as an important basis toward the understanding of their electrochemical behavior in carbonate electrolytes at different temperatures.

中文翻译:

通过基于同步加速器的成像技术揭示了锂金属阳极的温度相关化学和物理微观结构。

锂金属阳极由于其高比容量(3860 mAh g -1)和较低的电化学势(相对于标准氢电极为-3.04 V)。然而,几乎没有报道锂金属在不同环境中的行为。在本文中,使用先进的基于同步加速器的表征技术(例如X射线计算机断层扫描和能量依赖的X射线荧光图谱)探索了锂金属阳极在碳酸盐电解液中从微观到宏观的温度依赖性行为。举例说明了测试方法的重要性,并讨论了在不同温度下循环的锂阳极的电化学行为和失效模式。此外,通过分析库仑效率,表面形态,以及在准3D空间中固体电解质中间相的化学成分,以及与能量有关的X射线荧光图和边缘结构附近的X射线吸收。这项工作为锂金属阳极提供了新的表征方法,并为理解它们在不同温度下在碳酸盐电解质中的电化学行为提供了重要基础。
更新日期:2020-08-11
down
wechat
bug