当前位置: X-MOL 学术Simul. Model. Pract. Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical study on abrasive machining of rock using FDEM method
Simulation Modelling Practice and Theory ( IF 3.5 ) Pub Date : 2020-07-02 , DOI: 10.1016/j.simpat.2020.102145
Fuzeng Wang , Shuying Liu , Kaixun Ji

Rock machining has been widely used in many industries. In order to better understand the fracture and removal mechanism for rock materials during abrasive machining, a two-dimensional scratch model was developed using the hybrid finite-discrete element method (FDEM). The crack propagation during the abrasive machining process was simulated by inserting zero-thickness cohesive elements. Based on the model, the rock fragment, cutting forces as well as damage layer under different cutting parameters and abrasive angle were investigated by a simulation study. It was found that the fracture of cohesive elements was dominated by tensile loading (mode Ⅰ) at low cutting speed and cutting depth. With the increase of cutting depth and cutting speed, shear loading (mode Ⅱ) was responsible for the fracture mode of the cohesive elements in the primary chipping zone during abrasive machining of rock materials. Both the cutting forces and the thickness of damage layer increased with the increase of cutting speed and cutting depth, which is consistent with the simulation results obtained by finite element method (FEM) and discrete element method (DEM). The inertia effect in dynamic loadings was believed to be the main reason for the increase of cutting forces at higher cutting speeds. The results demonstrated the feasibility and reliability of FDEM in rock machining simulation.



中文翻译:

FDEM方法对岩石进行磨料加工的数值研究

岩石加工已广泛用于许多行业。为了更好地理解磨料加工过程中岩石材料的破裂和去除机理,使用混合有限元法(FDEM)建立了二维划痕模型。通过插入零厚度的粘结元件模拟了磨料加工过程中的裂纹扩展。在此模型的基础上,通过仿真研究了不同切削参数和磨削角度下的岩石碎屑,切削力以及破坏层。研究发现,在低切削速度和低切削深度下,粘结元件的断裂主要受拉伸载荷(Ⅰ型)的影响。随着切割深度和切割速度的增加,在岩石材料的磨削加工过程中,剪切载荷(Ⅱ型)是造成主要切屑区中粘结元件断裂模式的原因。切削力和损伤层厚度均随切削速度和切削深度的增加而增加,这与有限元法和离散元法的模拟结果吻合。人们认为动态载荷中的惯性效应是在较高切削速度下切削力增加的主要原因。结果证明了FDEM在岩石加工仿真中的可行性和可靠性。这与有限元法(FEM)和离散元法(DEM)获得的仿真结果一致。人们认为动态载荷中的惯性效应是在较高切削速度下切削力增加的主要原因。结果证明了FDEM在岩石加工仿真中的可行性和可靠性。这与有限元法(FEM)和离散元法(DEM)获得的仿真结果一致。人们认为动态载荷中的惯性效应是在较高切削速度下切削力增加的主要原因。结果证明了FDEM在岩石加工仿真中的可行性和可靠性。

更新日期:2020-07-02
down
wechat
bug