当前位置: X-MOL 学术J. Nucl. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancing resistance to radiation hardening and radiation thermal conductivity degradation by tungsten/graphene interface engineering
Journal of Nuclear Materials ( IF 2.8 ) Pub Date : 2020-07-02 , DOI: 10.1016/j.jnucmat.2020.152348
Shuyao Si , Jianli Wang , Jiejie Li , Wenqing Li , Hengjiang Cong , Jiangchao Liu , Jun Tang , Changzhong Jiang , Re Xia , Xiangheng Xiao

Radiation damage could be effectively alleviated by metal/graphene interfaces, which act as sinks to absorb defects spontaneously. In this study, four indispensable properties of tungsten nanofilms with inserted graphene monolayers were investigated, including changes in the thermal and mechanical properties as well as their respective radiation responses. We demonstrated that after the introduction of monolayer graphene, the hardness of the tungsten nanofilm was enhanced significantly by graphene interfaces with different densities. Molecular dynamics simulations showed that the presence of graphene interfaces can effectively inhibit dislocation propagation and delay the plastic deformation of tungsten. The cross-plane thermal conductivity of the tungsten nanofilms decreased after graphene was inserted, and this trend became more gradual as the density of the graphene interfaces increased. Uniquely, the thermal conductivity of the tungsten–graphene multilayered nanofilm showed a reduction of ∼20% after He-ion irradiation at 12.8 dpa compared to the greater than 50% reduction in the pure tungsten nanofilm. Moreover, the hardness of the pure tungsten nanofilm showed an increase of ∼160%, while the multilayer nanofilms exhibited almost no irradiation hardening. Transmission electron microscopy was used to analyze the effect of defects on the hardness and heat transport. Our results suggest that constructing tungsten/graphene interfaces has great potential in enhancing resistance to radiation thermal conductivity reduction and radiation hardening.



中文翻译:

通过钨/石墨烯界面工程提高对辐射硬化的抵抗力和辐射热导率的降低

金属/石墨烯界面可以有效缓解辐射损伤,因为金属/石墨烯界面可以吸收自然吸收的缺陷。在这项研究中,研究了具有插入的石墨烯单层的钨纳米膜的四个必不可少的特性,包括热和机械特性以及它们各自的辐射响应的变化。我们证明,引入单层石墨烯后,具有不同密度的石墨烯界面可以显着提高钨纳米膜的硬度。分子动力学模拟表明,石墨烯界面的存在可以有效地抑制位错扩散并延迟钨的塑性变形。插入石墨烯后,钨纳米膜的横截面热导率降低,随着石墨烯界面密度的增加,这种趋势变得越来越平缓。独特的是,在12.8 dpa的He离子辐照下,钨-石墨烯多层纳米膜的热导率降低了约20%,而纯钨纳米膜的热导率降低了50%以上。此外,纯钨纳米膜的硬度显示增加了约160%,而多层纳米膜几乎没有显示出辐射硬化。用透射电子显微镜分析缺陷对硬度和热传递的影响。我们的结果表明,构建钨/石墨烯界面在增强抗辐射导热性降低和辐射硬化方面具有巨大潜力。钨-石墨烯多层纳米膜的热导率在He离子辐照下以12.8 dpa降低了约20%,而纯钨纳米膜则降低了50%以上。此外,纯钨纳米膜的硬度显示增加了约160%,而多层纳米膜几乎没有显示出辐射硬化。用透射电子显微镜分析缺陷对硬度和热传递的影响。我们的结果表明,构造钨/石墨烯界面在增强抗辐射热导率降低和辐射硬化的能力方面具有巨大潜力。钨-石墨烯多层纳米膜的热导率在He离子辐照下以12.8 dpa降低了约20%,而纯钨纳米膜则降低了50%以上。此外,纯钨纳米膜的硬度显示增加了约160%,而多层纳米膜几乎没有显示出辐射硬化。用透射电子显微镜分析缺陷对硬度和热传递的影响。我们的结果表明,构建钨/石墨烯界面在增强抗辐射导热性降低和辐射硬化方面具有巨大潜力。纯钨纳米膜的硬度增加了约160%,而多层纳米膜几乎没有辐射硬化。用透射电子显微镜分析缺陷对硬度和热传递的影响。我们的结果表明,构造钨/石墨烯界面在增强抗辐射热导率降低和辐射硬化的能力方面具有巨大潜力。纯钨纳米膜的硬度增加了约160%,而多层纳米膜几乎没有辐射硬化。用透射电子显微镜分析缺陷对硬度和热传递的影响。我们的结果表明,构建钨/石墨烯界面在增强抗辐射导热性降低和辐射硬化方面具有巨大潜力。

更新日期:2020-07-02
down
wechat
bug