当前位置: X-MOL 学术Int. J. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Heat transfer characteristics investigations on liquid-cooled integrated micro pin-fin chip with gradient distribution arrays and double heating input for intra-chip micro-fluidic cooling
International Journal of Heat and Mass Transfer ( IF 5.0 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.ijheatmasstransfer.2020.120118
Shuai Feng , Yunfei Yan , Haojie Li , Fulei Xu , Li Zhang

Abstract Targeting at improving temperature uniformity for intra-chip cooling, present work experimentally and numerically investigates the influence of flow rate, heat flux density, fluid inlet temperature and double side heating power on thermal performance in embedded micro-pin fin chip using HFE7100 as the coolant. It is found appropriately increasing flow rate to form enhanced flow fluctuations could effectively improve temperature uniformity by flow impingement, mixing and local acceleration effect. However, the influence of changing fluid inlet temperature is weak. With increasing flow rate, the proportion of convection thermal resistance gradually reaches a plateau and dominants the total thermal resistance. Importantly, double side heating power significantly exacerbates the challenge of thermal management, resulting in a 50% reduction of the addressed heat flux limit and almost one factor of increment in maximum temperature gradient. Notably, present gradient distribution design could address a heat flux limit of 140 W/cm2, increasing by 30 W/cm2 than that in uniform arrangement. According to local Nu curve, the significant heat transfer enhanced zones are obtained in gradient distribution chip where local Nu obviously increases. These zones effectively inhibit the rise of temperature and provide a more uniform temperature distribution downstream.

中文翻译:

用于芯片内微流控冷却的梯度分布阵列双加热输入液冷集成微针翅片传热特性研究

摘要 为了提高芯片内冷却的温度均匀性,目前的工作通过实验和数值研究了流速、热流密度、流体入口温度和双面加热功率对使用 HFE7100 作为嵌入式微针翅片芯片热性能的影响。冷却液。发现适当增加流速形成增强的流动波动可以通过流动冲击、混合和局部加速作用有效提高温度均匀性。但是,改变流体入口温度的影响是微弱的。随着流量的增加,对流热阻的比例逐渐达到一个平台,并在总热阻中占主导地位。重要的是,双面加热功率显着加剧了热管理的挑战,导致所提到的热通量限制减少了 50%,并且最大温度梯度几乎增加了一个因素。值得注意的是,目前的梯度分布设计可以解决 140 W/cm2 的热通量限制,比均匀排列增加 30 W/cm2。根据局部Nu曲线,在局部Nu明显增加的梯度分布片中得到显着的传热增强区。这些区域有效地抑制了温度的上升,并在下游提供了更均匀的温度分布。在局部Nu明显增加的梯度分布芯片中获得了显着的传热增强区。这些区域有效地抑制了温度的上升,并在下游提供了更均匀的温度分布。在局部Nu明显增加的梯度分布芯片中获得了显着的传热增强区。这些区域有效地抑制了温度的上升,并在下游提供了更均匀的温度分布。
更新日期:2020-10-01
down
wechat
bug