当前位置: X-MOL 学术Geochim. Cosmochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental investigation of lithium isotope fractionation during kaolinite adsorption: Implications for chemical weathering
Geochimica et Cosmochimica Acta ( IF 4.5 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.gca.2020.06.025
Wenshuai Li , Xiao-Ming Liu

Abstract The feedback between CO2 sources and sinks through chemical weathering is one of the important reasons why Earth has maintained a habitable climate for over four billion years. The lithium (Li) isotopic system is a promising tracer of silicate weathering, but the mechanisms causing its isotope fractionation during weathering remain ambiguous. Here, we performed batch experiments of Li adsorption to one of the common clay minerals -kaolinite in three sets, including the time-series, pH-dependent, and concentration-control sets. Our results demonstrate that the liquid-solid Li isotope fractionation reaches up to 36‰, with up to 99% initial Li being adsorbed on kaolinite. The magnitudes of Li adsorption and isotope fractionation increase with reaction time, and reach the steady-state after ∼1000 min. The magnitude of Li isotope fractionation increases with the adsorption ratio of Li, in positive relationships with solute pH and ionic strength. At constant solute pH = 8.5 and ionic strength of 0.001 M, the adsorption ratio and isotope fractionation of Li on kaolinite reach the maximum with the lowest initial Li concentration of 2 μM. In experiments, Li is removed by kaolinite as the inner-sphere and/or outer-sphere complexes, likely followed by structural occupation as supported by incomplete desorption. We model the Li isotope fractionation in all three sets, which can be best described by Rayleigh distillation models. In summary, significant Li isotope fractionation occurs following a kinetic law in closed-systems during adsorption on kaolinite. Adsorption-driven isotope fractionation conforms to a kinetic solid-liquid isotope fractionation factor α ∼ 0.992, consistent with theoretical ion-desolvation between complexed and dissolved ions (α = 0.9925, Hofmann et al., 2012). This study reveals a vital kinetic role of clay uptake in Li isotope fractionation during chemical weathering, suggesting rapid forward adsorption reaction versus relatively slow backward reaction. The dominance of the kinetic mechanism over the equilibrium mechanism further explains field observations from rivers worldwide. Given above, the outcome of this study calls for additional attention on low-temperature kinetic Li isotope fractionation at Earth’s surface and further refinement of quantitative models using geological Li records to trace weathering and reconstruct climate.

中文翻译:

高岭石吸附过程中锂同位素分馏的实验研究:对化学风化的影响

摘要 CO2 源汇之间通过化学风化作用的反馈是地球保持宜居气候超过 40 亿年的重要原因之一。锂 (Li) 同位素系统是一种很有前景的硅酸盐风化示踪剂,但在风化过程中导致其同位素分馏的机制仍然不明确。在这里,我们在三组中对锂吸附到一种常见的粘土矿物 - 高岭石进行了批量实验,包括时间序列、pH 依赖性和浓度控制组。我们的结果表明,液固锂同位素分馏率高达 36‰,高达 99% 的初始锂吸附在高岭石上。锂吸附和同位素分馏的幅度随着反应时间的增加而增加,并在约 1000 分钟后达到稳态。Li同位素分馏的大小随着Li的吸附率增加,与溶质pH和离子强度呈正相关。在恒定的溶质 pH = 8.5 和 0.001 M 的离子强度下,锂在高岭石上的吸附率和同位素分馏达到最大值,初始锂浓度最低为 2 μM。在实验中,Li 被高岭石作为内球和/或外球复合物去除,随后可能是不完全解吸支持的结构占据。我们对所有三组中的 Li 同位素分馏进行建模,这可以通过瑞利蒸馏模型进行最佳描述。总之,在高岭石上吸附过程中,在封闭系统中遵循动力学规律发生显着的锂同位素分馏。吸附驱动的同位素分馏符合动力学固液同位素分馏因子 α ∼ 0.992,与络合离子和溶解离子之间的理论离子去溶剂化一致(α = 0.9925,Hofmann 等,2012)。该研究揭示了化学风化过程中粘土吸收在锂同位素分馏中的重要动力学作用,表明快速正向吸附反应与相对缓慢的反向反应。动力学机制在平衡机制上的主导地位进一步解释了世界范围内河流的实地观察。综上所述,这项研究的结果要求对地球表面的低温动力学锂同位素分馏给予更多关注,并进一步完善利用锂地质记录追踪风化和重建气候的定量模型。与复合离子和溶解离子之间的理论离子去溶剂化一致(α = 0.9925,Hofmann 等人,2012)。该研究揭示了化学风化过程中粘土吸收在锂同位素分馏中的重要动力学作用,表明快速正向吸附反应与相对缓慢的反向反应。动力学机制在平衡机制上的主导地位进一步解释了世界范围内河流的实地观察。综上所述,这项研究的结果要求对地球表面的低温动力学锂同位素分馏给予更多关注,并进一步完善利用锂地质记录追踪风化和重建气候的定量模型。与复合离子和溶解离子之间的理论离子去溶剂化一致(α = 0.9925,Hofmann 等人,2012)。该研究揭示了化学风化过程中粘土吸收在锂同位素分馏中的重要动力学作用,表明快速正向吸附反应与相对缓慢的反向反应。动力学机制在平衡机制上的主导地位进一步解释了世界范围内河流的实地观察。综上所述,这项研究的结果要求对地球表面的低温动力学锂同位素分馏给予更多关注,并进一步完善利用锂地质记录追踪风化和重建气候的定量模型。该研究揭示了化学风化过程中粘土吸收在锂同位素分馏中的重要动力学作用,表明快速正向吸附反应与相对缓慢的反向反应。动力学机制在平衡机制上的主导地位进一步解释了世界范围内河流的实地观察。综上所述,这项研究的结果要求对地球表面的低温动力学锂同位素分馏给予更多关注,并进一步完善利用锂地质记录追踪风化和重建气候的定量模型。该研究揭示了化学风化过程中粘土吸收在锂同位素分馏中的重要动力学作用,表明快速正向吸附反应与相对缓慢的反向反应。动力学机制在平衡机制上的主导地位进一步解释了世界范围内河流的实地观察。综上所述,这项研究的结果要求对地球表面的低温动力学锂同位素分馏给予更多关注,并进一步完善利用锂地质记录追踪风化和重建气候的定量模型。
更新日期:2020-09-01
down
wechat
bug