当前位置: X-MOL 学术Comput. Phys. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes
Computer Physics Communications ( IF 7.2 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.cpc.2020.107477
S. Aiello , A. Albert , S. Alves Garre , Z. Aly , F. Ameli , M. Andre , G. Androulakis , M. Anghinolfi , M. Anguita , G. Anton , M. Ardid , J. Aublin , C. Bagatelas , G. Barbarino , B. Baret , S. Basegmez du Pree , M. Bendahman , E. Berbee , A.M. van den Berg , V. Bertin , S. Biagi , A. Biagioni , M. Bissinger , M. Boettcher , J. Boumaaza , M. Bouta , M. Bouwhuis , C. Bozza , H. Brânzaş , M. Bruchner , R. Bruijn , J. Brunner , E. Buis , R. Buompane , J. Busto , D. Calvo , A. Capone , V. Carretero , P. Castaldi , S. Celli , M. Chabab , N. Chau , A. Chen , S. Cherubini , V. Chiarella , T. Chiarusi , M. Circella , R. Cocimano , J.A.B. Coelho , A. Coleiro , M. Colomer Molla , R. Coniglione , I. Corredoira , P. Coyle , A. Creusot , G. Cuttone , A. D’Onofrio , R. Dallier , M. De Palma , I. Di Palma , A.F. Díaz , D. Diego-Tortosa , C. Distefano , A. Domi , R. Donà , C. Donzaud , D. Dornic , M. Dörr , D. Drouhin , M. Durocher , T. Eberl , D. van Eijk , I. El Bojaddaini , D. Elsaesser , A. Enzenhöfer , V. Espinosa Roselló , P. Fermani , G. Ferrara , M.D. Filipović , F. Filippini , A. Franco , L.A. Fusco , O. Gabella , T. Gal , A. Garcia Soto , F. Garufi , Y. Gatelet , N. Geißelbrecht , L. Gialanella , E. Giorgio , S.R. Gozzini , R. Gracia , K. Graf , D. Grasso , G. Grella , D. Guderian , C. Guidi , S. Hallmann , H. Hamdaoui , H. van Haren , A. Heijboer , A. Hekalo , J.J. Hernández-Rey , J. Hofestädt , F. Huang , W. Idrissi Ibnsalih , G. Illuminati , C.W. James , M. de Jong , P. de Jong , B.J. Jung , M. Kadler , P. Kalaczyński , O. Kalekin , U.F. Katz , N.R. Khan Chowdhury , F. van der Knaap , E.N. Koffeman , P. Kooijman , A. Kouchner , M. Kreter , V. Kulikovskiy , R. Lahmann , G. Larosa , R. Le Breton , O. Leonardi , F. Leone , E. Leonora , G. Levi , M. Lincetto , M. Lindsey Clark , T. Lipreau , A. Lonardo , F. Longhitano , D. Lopez-Coto , L. Maderer , J. Mańczak , K. Mannheim , A. Margiotta , A. Marinelli , C. Markou , L. Martin , J.A. Martínez-Mora , A. Martini , F. Marzaioli , S. Mastroianni , S. Mazzou , K.W. Melis , G. Miele , P. Migliozzi , E. Migneco , P. Mijakowski , L.S. Miranda , Z. Modebadze , C.M. Mollo , M. Morganti , M. Moser , A. Moussa , R. Muller , M. Musumeci , L. Nauta , S. Navas , C.A. Nicolau , B. Ó Fearraigh , M. Organokov , A. Orlando , G. Papalashvili , R. Papaleo , C. Pastore , A.M. Paun , G.E. Păvălaş , C. Pellegrino , M. Perrin-Terrin , P. Piattelli , C. Pieterse , K. Pikounis , O. Pisanti , C. Poirè , V. Popa , M. Post , T. Pradier , G. Pühlhofer , S. Pulvirenti , L. Quinn , O. Rabyang , F. Raffaelli , N. Randazzo , A. Rapicavoli , S. Razzaque , D. Real , S. Reck , J. Reubelt , G. Riccobene , M. Richer , S. Rivoire , A. Rovelli , F. Salesa Greus , D.F.E. Samtleben , A. Sánchez Losa , M. Sanguineti , A. Santangelo , D. Santonocito , P. Sapienza , J. Schnabel , V. Sciacca , J. Seneca , I. Sgura , R. Shanidze , A. Sharma , F. Simeone , A. Sinopoulou , B. Spisso , M. Spurio , D. Stavropoulos , J. Steijger , S.M. Stellacci , M. Taiuti , Y. Tayalati , E. Tenllado , T. Thakore , S. Tingay , E. Tzamariudaki , D. Tzanetatos , V. Van Elewyck , G. Vannoye , G. Vasileiadis , F. Versari , S. Viola , D. Vivolo , G. de Wasseige , J. Wilms , R. Wojaczyński , E. de Wolf , D. Zaborov , S. Zavatarelli , A. Zegarelli , J.D. Zornoza , J. Zúñiga , N. Zywucka

Abstract The gSeaGen code is a GENIE-based application developed to efficiently generate high statistics samples of events, induced by neutrino interactions, detectable in a neutrino telescope. The gSeaGen code is able to generate events induced by all neutrino flavours, considering topological differences between track-type and shower-like events. Neutrino interactions are simulated taking into account the density and the composition of the media surrounding the detector. The main features of gSeaGen are presented together with some examples of its application within the KM3NeT project. Program summary Program Title: gSeaGen CPC Library link to program files: http://dx.doi.org/10.17632/ymgxvy2br4.1 Licensing provisions: GPLv3 Programming language: C++ External routines/libraries: GENIE [1] and its external dependencies. Linkable to MUSIC [2] and PROPOSAL [3]. Nature of problem: Development of a code to generate detectable events in neutrino telescopes, using modern and maintained neutrino interaction simulation libraries which include the state-of-the-art physics models. The default application is the simulation of neutrino interactions within KM3NeT [4]. Solution method: Neutrino interactions are simulated using GENIE, a modern framework for Monte Carlo event generators. The GENIE framework, used by nearly all modern neutrino experiments, is considered as a reference code within the neutrino community. Additional comments including restrictions and unusual features: The code was tested with GENIE version 2.12.10 and it is linkable with release series 3. Presently valid up to 5 TeV. This limitation is not intrinsic to the code but due to the present GENIE valid energy range. References: [1] C. Andreopoulos at al., Nucl. Instrum. Meth. A614 (2010) 87. [2] P. Antonioli et al., Astropart. Phys. 7 (1997) 357. [3] J. H. Koehne et al., Comput. Phys. Commun. 184 (2013) 2070. [4] S. Adrian-Martinez et al., J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001.

中文翻译:

gSeaGen:基于 KM3NeT GENIE 的中微子望远镜代码

摘要 gSeaGen 代码是一种基于 GENIE 的应用程序,开发用于有效生成事件的高统计样本,由中微子相互作用引起,可在中微子望远镜中检测到。gSeaGen 代码能够生成由所有中微子风味引起的事件,考虑到轨道类型和类似淋浴的事件之间的拓扑差异。考虑到探测器周围介质的密度和成分,模拟中微子相互作用。介绍了 gSeaGen 的主要功能及其在 KM3NeT 项目中的一些应用示例。程序摘要 程序名称:gSeaGen CPC 库程序文件链接:http://dx.doi.org/10.17632/ymgxvy2br4.1 许可条款:GPLv3 编程语言:C++ 外部例程/库:GENIE [1] 及其外部依赖项。可链接到音乐 [2] 和提案 [3]。问题性质:开发代码以在中微子望远镜中生成可检测事件,使用现代和维护的中微子相互作用模拟库,其中包括最先进的物理模型。默认应用是模拟 KM3NeT [4] 中的中微子相互作用。解决方法:使用 GENIE 模拟 Neutrino 相互作用,GENIE 是蒙特卡罗事件生成器的现代框架。几乎所有现代中微子实验都使用的 GENIE 框架被视为中微子社区内的参考代码。包括限制和不寻常功能在内的其他评论:该代码已使用 GENIE 版本 2.12.10 进行测试,并且可与版本系列 3 链接。目前最高可达 5 TeV。这个限制不是代码固有的,而是由于当前的 GENIE 有效能量范围。参考文献: [1] C. Andreopoulos 等人,Nucl。仪器。冰毒。A614 (2010) 87. [2] P. Antonioli 等人,Astropart。物理。7 (1997) 357. [3] JH Koehne 等人,Comput. 物理。社区。184 (2013) 2070. [4] S. Adrian-Martinez 等人,J. Phys. G:核。部分。物理。43 (2016) 084001。
更新日期:2020-11-01
down
wechat
bug