当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In-situ and synchronous generation of oxygen vacancies and FeOx OECs on BiVO4 for ultrafast electron transfer and excellent photoelectrochemical performance
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2020-07-02 , DOI: 10.1016/j.cej.2020.126134
Yan Zhang , Jing Bai , Jiachen Wang , Shuai Chen , Hong Zhu , Jinhua Li , Linsen Li , Tingsheng Zhou , Baoxue Zhou

Efficient separation and transport of charge is a critical issue in solar-driven water oxidation. Herein, we developed a novel, facile, controllable method based on zero-valent iron (ZVI) reduction to in-situ and synchronous generate oxygen vacancies (Ov) and FeOx oxygen evolution co-catalysts (OECs) on BiVO4 for ultrafast electron transfer and excellent photoelectrochemical (PEC) water oxidation. In this method, a moderate and controllable ZVI reduction was the critical step to ensure whole penetration of Ov from BiVO4 to FeOx layer. This is because a special galvanic cell is formed between ZVI and BiVO4, making it easy to capture oxygen atom from BiVO4 and obtain a FeOx layer (5 nm) outside simultaneously in oxygen-free annealing. The Ov can extend light absorption by narrowing bandgap and significantly improve electron mobility (8.6×10-7 cm2 s-1) by reducing the trap-assisted recombination, which is 6.1-fold of BiVO4. Meanwhile, electron lifetime increases from 11.6 to 115.3 ms. Ultrathin FeOx layer provides more sites and dramatically reduces OER over-potential of 210 mV, resulting in fast hole-to-oxygen kinetics. A photocurrent of 3.13 mA·cm−2 at 1.23 VRHE is achieved for PEC water oxidation, which is 4.6-fold of pristine BiVO4. This work provides a new path to overcome charge transport limitations and achieve enhanced solar water oxidation.



中文翻译:

在BiVO 4上原位同步生成氧空位和FeO x OEC,可实现超快电子转移和出色的光电化学性能

电荷的有效分离和传输是太阳能驱动水氧化过程中的关键问题。本文中,我们开发了一种基于零价铁(ZVI)还原的新颖,简便,可控制的方法,以在BiVO 4上原位并同步产生氧空位(O v)和FeO x氧释放助催化剂(OEC),从而实现超快电子转移和出色的光电化学(PEC)水氧化。在这种方法中,适度和可控的ZVI还原是确保O v从BiVO 4完全渗透到FeO x层的关键步骤。这是因为在ZVI和BiVO 4之间形成了特殊的原电池,从而易于从BiVO捕获氧原子参照图4,在无氧退火中同时在外部获得FeO x层(5nm)。O v可以通过缩小带隙来扩展光吸收,并通过减少陷阱辅助复合(BiVO 4的6.1倍)来显着提高电子迁移率(8.6×10 -7 cm 2 s -1)。 11.6至115.3毫秒。超薄的FeO x层提供了更多的位置,并大大降低了210 mV的OER过电位,从而实现了快速的空穴-氧动力学。PEC水氧化时,在1.23 V RHE处获得3.13 mA·cm -2的光电流,是原始BiVO的4.6倍4。这项工作提供了一条新的途径来克服电荷传输的局限性并实现增强的太阳能氧化作用。

更新日期:2020-07-02
down
wechat
bug