当前位置: X-MOL 学术Ceram. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Accelerating F-doping in transparent conducting F-doped SnO2 films for electrochromic energy storage devices
Ceramics International ( IF 5.1 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.ceramint.2020.06.293
Myeong-Hun Jo , Bon-Ryul Koo , Hyo-Jin Ahn

Abstract In this study, we designed a unique method for increasing F-doping concentration in F-doped SnO2 (FTO) films, without the extra addition of NH4F as a doping source, using NaOH acting as a functional additive during ultrasonic spray pyrolysis. The NaOH triggers a chemical reaction with HF, resulting in the presence of dissociated F− acting as a doping source. To optimize the NaOH effect on the transparent conducting performance in the FTO films, we adjusted the volume percentages of the NaOH to 0, 1, 5, and 10 vol% during FTO deposition. Compared with other FTO films, the FTO film prepared with 5 vol% NaOH revealed enhanced carrier concentration (7.81 × 1020 cm−3) generated by the increased F-doping concentration (3.57 at%) and high Hall mobility (27.18 cm2/(V S)) through smooth surface morphology. Such behaviors through the NaOH effect resulted in FTO films with decreased sheet resistance (5.3 ± 0.16 Ω/□), leading to improved electrochromic (EC) energy storage performances of fast switching speed (6.6 s for coloration speed and 8.4 s for bleaching speed) due to faster electrochemical kinetics at the active electrodes, high coloration efficiency (58.1 cm2/C) and high specific capacitance (65.2 F/g at 2 A/g) via enhanced electrochemical activity in the active electrodes that widens the transmittance modulation. Therefore, our study suggests a novel method to improve the transparent conducting performances of FTO films for application in EC energy storage devices.

中文翻译:

加速用于电致变色储能装置的透明导电 F 掺杂 SnO2 薄膜中的 F 掺杂

摘要 在这项研究中,我们设计了一种独特的方法来增加 F 掺杂的 SnO2 (FTO) 薄膜中的 F 掺杂浓度,而无需额外添加 NH4F 作为掺杂源,在超声喷雾热解过程中使用 NaOH 作为功能添加剂。NaOH 会引发与 HF 的化学反应,导致作为掺杂源的离解 F- 的存在。为了优化 NaOH 对 FTO 薄膜中透明导电性能的影响,我们在 FTO 沉积过程中将 NaOH 的体积百分比调整为 0、1、5 和 10 vol%。与其他 FTO 薄膜相比,用 5 vol% NaOH 制备的 FTO 薄膜显示出由增加的 F 掺杂浓度(3.57 at%)和高霍尔迁移率(27.18 cm2/(VS )) 通过光滑的表面形态。通过 NaOH 效应的这种行为导致 FTO 薄膜的薄层电阻降低 (5.3 ± 0.16 Ω/□),从而提高了电致变色 (EC) 能量存储性能的快速切换速度(着色速度为 6.6 秒,漂白速度为 8.4 秒)由于活性电极上更快的电化学动力学、高着色效率 (58.1 cm2/C) 和高比电容(2 A/g 时为 65.2 F/g),通过增强的活性电极中的电化学活性扩大了透射率调制。因此,我们的研究提出了一种提高 FTO 薄膜在 EC 储能装置中应用的透明导电性能的新方法。由于活性电极上更快的电化学动力学、高着色效率 (58.1 cm2/C) 和高比电容(2 A/g 时为 65.2 F/g),通过增强的电化学活性,着色速度为 6 秒,漂白速度为 8.4 秒在扩大透射率调制的有源电极中。因此,我们的研究提出了一种提高 FTO 薄膜在 EC 储能装置中应用的透明导电性能的新方法。由于活性电极上更快的电化学动力学、高着色效率 (58.1 cm2/C) 和高比电容(2 A/g 时为 65.2 F/g),通过增强的电化学活性,着色速度为 6 秒,漂白速度为 8.4 秒在扩大透射率调制的有源电极中。因此,我们的研究提出了一种提高 FTO 薄膜在 EC 储能装置中应用的透明导电性能的新方法。
更新日期:2020-11-01
down
wechat
bug