当前位置: X-MOL 学术Environ. Sci. Pollut. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Producing electrical energy in microbial fuel cells based on sulphate reduction: a review.
Environmental Science and Pollution Research Pub Date : 2020-07-02 , DOI: 10.1007/s11356-020-09728-7
Isabel Cristina Braga Rodrigues 1, 2 , Versiane A Leão 1
Affiliation  

Combination of the treatment of effluents with high organic loads and the production of electricity is the driving forces stimulating the development of microbial fuel cells (MFC). The increase in electricity production in MFCs requires not only the optimization of the operational parameters but also the inhibition of the metabolic pathways, which compete with electricity production, such as methanogenesis. The presence of both sulphate and sulphide ions in conventional anaerobic reactors hampers the growth of methanogenic archaea and justifies the use of sulphate and therefore sulphate-reducing bacteria (SRB) in the anodic half-cell of MFC. Most importantly, the literature on the subject reveals that SRB are able to directly transfer electrons to solid electrodes, enabling the production of electrical energy. This technology is versatile because it associates the removal of both sulphate and the chemical oxygen demand (COD) with the production of electricity. Therefore, the current work revises the main aspects related to the inoculation of MFC with SRB focusing on (i) the microbial interactions in the anodic chamber, (ii) the electron transfer pathways to the solid anode, and also (iii) the sulphate and COD removal yields along with the electricity production efficiencies.



中文翻译:

基于硫酸盐还原产生微生物燃料电池中的电能:综述。

高有机负荷废水处理与电力生产相结合,是刺激微生物燃料电池(MFC)发展的驱动力。MFC中发电量的增加不仅需要优化运行参数,而且还需要抑制与发电竞争的产生甲烷代谢等代谢途径。常规厌氧反应器中同时存在硫酸根离子和硫化物离子会阻碍产甲烷的古细菌的生长,并证明在MFC的阳极半电池中使用硫酸根和减少硫酸根还原的细菌(SRB)是合理的。最重要的是,有关该主题的文献表明,SRB能够将电子直接转移到固体电极,从而产生电能。该技术用途广泛,因为它将硫酸盐和化学需氧量(COD)的去除与电力生产相关联。因此,当前的工作修订了与SRB接种MFC有关的主要方面,重点是(i)阳极室中的微生物相互作用,(ii)电子传递至固体阳极的途径,以及(iii)硫酸盐和去除COD的产量以及发电效率。

更新日期:2020-07-02
down
wechat
bug