当前位置: X-MOL 学术New J. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthesis of graphene oxide with a lower band gap and study of charge transfer interactions with perylenediimide
New Journal of Chemistry ( IF 2.7 ) Pub Date : 2020-07-01 , DOI: 10.1039/d0nj01906b
Komal Bhardwaj 1, 2, 3, 4, 5 , Rachana Kumar 1, 2, 3, 4, 5 , Naveen Joy Kindo 1, 2, 3, 4 , Nikita Vashistha 4, 5, 6, 7, 8 , Akhilesh Kumar Patel 4, 9, 10, 11 , Mahesh Kumar 4, 5, 6, 7, 8 , Pramod Kumar 4, 12, 13, 14
Affiliation  

The optical and electrical properties of graphene oxide (GO) have been modulated by using different chemical and physical routes. In the current work, solution processable GOs, i.e., mGO-1 & mGO-0.5 with band gaps of 1.50 eV and 1.35 eV respectively, have been prepared by optimizing graphite oxidation conditions to deliver properties similar to reduced graphene oxide (rGO) without employing tedious reduction steps. GO has been characterized by FT-infrared (FTIR) spectroscopy, UV-Vis absorption, Raman spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to establish a low degree of functionalization and large sp2 crystallite size (66 Å) in synthesized GO (mGO-0.5). We have further performed a study on the interaction of GO with n-type organic semiconductor materials, i.e., perylenediimide (PDI). Well aligned energy levels, calculated by electrochemical analysis, facilitate electron transfer from GO to PDI molecules as evident from transient absorption spectroscopy (TAS). This work introduces a facile methodology for the preparation of solution processable rGO like lower band gap GO to be used as the donor material in organic electronic devices especially organic solar cells.

中文翻译:

具有较低带隙的氧化石墨烯的合成及与per二酰亚胺的电荷转移相互作用的研究

氧化石墨烯(GO)的光学和电学性质已通过使用不同的化学和物理途径进行了调节。在目前的工作中,可溶液加工的GOS,GO-1GO-0.5与1.50 eV和1.35 eV的分别,已经制备通过优化石墨的氧化条件以提供类似的还原的石墨烯氧化物的性质的带隙(RG0)无需采取繁琐的还原步骤。GO的特征在于FT红外(FTIR)光谱,UV-Vis吸收,拉曼光谱,X射线衍射(XRD)和X射线光电子能谱(XPS),以建立低官能度和较大的sp 2晶粒尺寸(66Å)在合成GO(mGO-0.5)。我们进一步进行了GO与n型有机半导体材料per二酰亚胺(PDI)相互作用的研究。通过电化学分析计算得出的能级对齐的能量水平有助于电子从GO转移到PDI分子,这从瞬态吸收光谱(TAS)可以明显看出。这项工作介绍了一种简便的方法,用于制备可溶液处理的rGO,例如较低的带隙GO,将用作有机电子器件(尤其是有机太阳能电池)中的供体材料。
更新日期:2020-07-27
down
wechat
bug