当前位置: X-MOL 学术J. Electrochem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling Water Electrolysis in Bipolar Membranes
Journal of The Electrochemical Society ( IF 3.1 ) Pub Date : 2020-06-30 , DOI: 10.1149/1945-7111/ab9ccb
Jacob A. Wrubel , Yingying Chen , Zhiwen Ma , Todd G. Deutsch

Bipolar membranes (BPMs) have proven useful in numerous electrochemical energy conversion and storage applications, including fuel cells and electrolyzers. However, water dissociation in bipolar membrane electrolysis cells (BPMECs) is a complicated phenomenon that occurs via several different pathways. In this work, we develop a model based on the Poisson-Nernst-Planck system that includes a multistep water-dissociation mechanism to observe the fundamental processes that contribute to BPMEC performance. The model, which is validated to in-house experimental data, demonstrates that the junction potential is the most significant contributor to the total electrolysis voltage. We investigated the effects of water-dissociation catalysts and found that the optimal catalyst ##IMG## [http://ej.iop.org/images/1945-7111/167/11/114502/jesab9ccbieqn1.gif] {$p{K}_{a}$} depends on how the catalyst is integrated into the BPM (although values near 7 are typically best, in ...

中文翻译:

双极膜中水电解的建模

事实证明,双极性膜(BPM)可用于许多电化学能量转换和存储应用,包括燃料电池和电解槽。但是,双极膜电解池(BPMEC)中的水离解是一种复杂的现象,它通过几种不同的途径发生。在这项工作中,我们开发了一个基于Poisson-Nernst-Planck系统的模型,该模型包括一个多步水离解机制,可观察有助于BPMEC性能的基本过程。经过内部实验数据验证的模型表明,结电势是总电解电压的最重要因素。我们研究了水离解催化剂的作用,发现了最佳催化剂## IMG ## [http://ej.iop.org/images/1945-7111/167/11/114502/jesab9ccbieqn1。
更新日期:2020-07-01
down
wechat
bug