当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Maximizing piezoelectricity by self-assembled highly porous perovskite–polymer composite films to enable the internet of things
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2020-07-01 , DOI: 10.1039/d0ta03416a
Asif Abdullah Khan 1, 2, 3, 4 , Md Masud Rana 1, 2, 3, 4 , Guangguang Huang 1, 2, 3, 4 , Nanqin Mei 2, 3, 4, 5 , Resul Saritas 2, 3, 4, 6 , Boyu Wen 1, 2, 3, 4 , Steven Zhang 1, 2, 3, 4 , Peter Voss 4, 7, 8 , Eihab-Abdel Rahman 2, 3, 4, 6 , Zoya Leonenko 2, 3, 4, 5 , Shariful Islam 4, 7, 8 , Dayan Ban 1, 2, 3, 4
Affiliation  

There is an urgent demand in the industry for the development of compact, flexible, and sustainable power sources for self-powered internet of things (IoT) micro/nano devices. One of the most promising routes is to harness environmental energy through piezoelectric nanogenerators (PNGs). A novel, self-assembled, highly porous perovskite/polymer (polyvinylidene fluoride (PVDF) in this case) composite film was developed for fabricating high-performance piezoelectric nanogenerators (PNGs). The macroscopic porous structure can significantly enlarge the bulk strain of the piezoelectric composite film, which leads to a ≈5-fold enhancement in the strain-induced piezo potential. In addition, the novel hybrid halide perovskites (HHP)–formamidinium lead bromine iodine (FAPbBr2I) material can improve the conductivity of the final composite film due to its enhanced permittivity, providing a ≈15-fold amplification of the output current. Using these highly-efficient perovskite/polymer PNGs (P-PNGs), a peak output power density of 10 μW cm−2 (across a resistance of 7 MΩ) was obtained to run a self-powered integrated wireless electronic node (SIWEN). The P-PNG application was then extended to real-life scenarios including wireless data communication between the nanogenerators and personal electronics, efficient energy harvesting from automobile vibrations and also from biomechanical motion. This P-PNG based on a low-temperature full-solution synthesis approach, may initiate a paradigm shift by opening the realms of flexible PNGs as sustainable power sources.

中文翻译:

通过自组装的高孔钙钛矿-聚合物复合膜最大程度地提高压电性,从而实现物联网

在行业中,迫切需要为自供电的物联网(IoT)微型/纳米设备开发紧凑,灵活和可持续的电源。最有前途的途径之一是通过压电纳米发电机(PNG)利用环境能量。开发了一种新颖的,自组装的,高度多孔的钙钛矿/聚合物(在这种情况下为聚偏二氟乙烯(PVDF))复合膜,用于制造高性能压电纳米发电机(PNG)。宏观的多孔结构可以显着增大压电复合膜的整体应变,从而导致应变诱发的压电势提高约5倍。此外,新型杂化卤化物钙钛矿(HHP)-甲ami溴化碘溴(FAPbBr 2I)由于其介电常数的提高,材料可以改善最终复合膜的电导率,从而提供约15倍的输出电流放大率。使用这些高效的钙钛矿/聚合物PNG(P-PNG),可获得10μWcm -2的峰值输出功率密度(跨7MΩ的电阻),以运行自供电的集成无线电子节点(SIWEN)。然后,P-PNG应用程序扩展到了现实生活中,包括纳米发电机与个人电子设备之间的无线数据通信,从汽车振动以及生物力学运动中有效收集能量。这种基于低温全溶液合成方法的P-PNG,可以通过打开柔性PNG领域作为可持续能源来启动范式转变。
更新日期:2020-07-14
down
wechat
bug